if alpha and beta are zeros of quadratic polynomial find one upon Alpha square + 1 upon beta square minus 2 alpha square beta square
Answers
Answered by
1
Answer:
( a²b² - 2a³c - 2c⁴) / c²a²
Step-by-step explanation:
α & β are zeroes of
ax² + bx + c
then α + β = -b/a ( sum of roots)
αβ = c/a ( Product of roots)
1/α² + 1/β² - 2α²β²
= (β² + α²)/α²β² - 2(αβ)²
using x² + y² = (x + y)² - 2xy
= ((α + β)² - 2αβ )/(αβ)² - - 2(αβ)²
= (b²/a² - 2c/a) /(c²/a²) - 2c²/a²
= (b² - 2ac)/c² - 2c²/a²
= (1/c²a²) ( a²(b² - 2ac) - c²*2c²)
= (1/c²a²) ( a²b² - 2a³c - 2c⁴)
= ( a²b² - 2a³c - 2c⁴) / c²a²
Similar questions