Math, asked by tushar3416, 1 year ago

if alpha and beta are zeros of quadratic polynomial find one upon Alpha square + 1 upon beta square minus 2 alpha square beta square​

Answers

Answered by amitnrw
1

Answer:

( a²b² - 2a³c  - 2c⁴) / c²a²

Step-by-step explanation:

α & β are zeroes of  

ax² + bx + c

then α + β = -b/a   ( sum of roots)

αβ = c/a  ( Product of roots)

1/α²  + 1/β²  - 2α²β²

= (β² + α²)/α²β²  - 2(αβ)²

using x² + y² = (x + y)² - 2xy

= ((α + β)² - 2αβ )/(αβ)² -  - 2(αβ)²

= (b²/a²  - 2c/a) /(c²/a²)  -  2c²/a²

= (b² - 2ac)/c²  - 2c²/a²

= (1/c²a²) ( a²(b² - 2ac)  - c²*2c²)

= (1/c²a²) ( a²b² - 2a³c  - 2c⁴)

=  ( a²b² - 2a³c  - 2c⁴) / c²a²

Similar questions