If alpha and beta are zeros of the polynomial f(x) = x² - x - k such that a - b = 9 , find k
Need perfect answer .
No spam ✖️ spam = 10answer report of the user
Answers
EXPLANATION.
α,β are the zeroes of the polynomial,
⇒ F(x) = x² - x - k = 0.
As we know that,
Sum of zeroes of the quadratic equation,
⇒ α + β = -b/a.
⇒ α + β = -(-1) ⇒ 1.
Products of zeroes of quadratic equation,
⇒ αβ = c/a.
⇒ αβ = -k.
⇒ α - β = 9 ⇒ (2).
From equation (1) and (2) we get,
⇒ α + β = 1.
⇒ α - β = 9.
We get,
⇒ 2α = 10.
⇒ α = 5.
Put the value of α = 5 in equation (1) we get,
⇒ 5 + β = 1.
⇒ α = -4.
Value of α = 5 and β = -4.
⇒ αβ = -k.
⇒ (5)(-4) = -k.
⇒ -20 = -k.
⇒ k = 20
Gɪᴠᴇɴ :
- α & β are zeroes of polynomial f(x).
Where,
- f(x) = x² - x - k
Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,
➣ The general form of an quadratic polynomial is,
➣ Compare given quadratic polynomial to the general form of quadratic equation, we get
➾ α + β = 1 ----(a)
Aɴᴅ,
➾ αβ = -k ----(i)
Aᴄᴄᴏʀᴅɪɴɢ ᴛᴏ ᴛʜᴇ ǫᴜᴇsᴛɪᴏɴ,
➾ α - β = 9 ----(b)
➣ Now adding equation (a) & (b), we get
⇒ α + β + α - β = 1 + 9
⇒ 2α = 10
⇒ α =
⇒
➣ Putting the value of α in equation (a), we get
➾ α + β = 1
➾ 5 + β = 1
➾ β = 1 - 5
➾
➣ Let us putting the value of α & β in equation (i), we get
5 × (-4) = -k
-20 = -k
The value of 'k' is 20.