If alpha and beta are zeros of the polynomial kx^2+3x+2 and alpha ^2+beta^2+alpha*beta=-1/25 then find k
Answers
Answered by
2
Given, α and β are the zeroes of the given polynomial kx2 + 4x + 4.
⇒ 24k2 + 8k – 16 = 0
⇒ 3k2 + k – 2 = 0
⇒ 3k2 + 3k – 2k – 2 = 0
⇒ 3k (k + 1) –2 (k + 1) = 0
⇒ (3k – 2) (k + 1) = 0
⇒ 3k – 2 = 0 or k + 1 = 0
AMANYAAHUJA26:
I think you have copied it wrong it is 3x not 4x ...please correct it
Answered by
7
alpha+beta=-b/a
alpha+beta=-3/k
alpha*beta=c/a
alpha*beta=2/k
#alpha^2+beta^2=(alpha+beta)^2-2alpha*beta
so,
(alpha+beta)^2-2alpha*beta+alpha*beta
(alpha+beta)^2-alpha*beta=-1/25
putting up the values
(-3/k)^2-(2/k)=-1/25
9/k^2 -2/k=-1/25
lcm=k^2
9-2k/k^2=-1/25
25(9-2k)=-k^2
225-50k=-k^2
k^2-50k+225=0
u can solve now....
alpha+beta=-3/k
alpha*beta=c/a
alpha*beta=2/k
#alpha^2+beta^2=(alpha+beta)^2-2alpha*beta
so,
(alpha+beta)^2-2alpha*beta+alpha*beta
(alpha+beta)^2-alpha*beta=-1/25
putting up the values
(-3/k)^2-(2/k)=-1/25
9/k^2 -2/k=-1/25
lcm=k^2
9-2k/k^2=-1/25
25(9-2k)=-k^2
225-50k=-k^2
k^2-50k+225=0
u can solve now....
Similar questions