Math, asked by harsh2196, 10 months ago

if alpha and beta are zeros of the polynomial x square minus 4 root 3 X + 3 then find the value of alpha + beta minus alpha beta ​

Answers

Answered by arunyadav1973
5

Step-by-step explanation:

 {x}^{2}  - 4 \sqrt{3} x + 3 = 0 \\ compairing \: equation \: with \: a {x}^{2} + bx + c = 0 \\ a = 1  \:  \:  \: b = 4 \sqrt{3}   \:  \:  \: c = 3 \\  {b}^{2}  - 4ac =  {(4 \sqrt{3} )}^{2}  - 4 \times 1 \times 3 \\  {b}^{2}  - 4ac = 16 \times 3 - 12 \\  {b }^{2}  - 4ac = 48 - 12 \\  {b}^{2}  - 4ac = 36 \\ using \: formula \\ x =  \frac{ - b +  -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x = \frac{ - (4 \sqrt{3}) +  -  \sqrt{36}  }{2} \\ x =  \frac{ - 4 \sqrt{3} +  - 6 }{2}  \\ x =   \frac{ - 4 \sqrt{3} + 6 }{2}  \:  \:  \: or \:  \:  \: x =   \frac{ - 4 \sqrt{3 } - 6 }{2} \\ x =  \frac{  2( - 2 \sqrt{3} + 3) }{2} \:  \:  \: or \:  \:  \: x =  \frac{2( - 2 \sqrt{3}  - 3)}{2}  \\ x =  - 2 \sqrt{3}   + 3 \:  \:  \: or \:  \:  \: x =  - 2 \sqrt{3} - 3

let \:  - 2 \sqrt{3} + 3 =   \alpha  \: and \:  - 2 \sqrt{3} - 3 =  \beta  \\

 \alpha  +  \beta  -  \alpha  \beta  \\  - 2 \sqrt{3}  + 3 +  - 2 \sqrt{3}  - 3 - ( - 2 \sqrt{3} + 3 \times  - 2 \sqrt{3} - 3) \\  =  - 4 \sqrt{3}  - (  - 2 \sqrt{3}  + 3 \times  - 2 \sqrt{3}  - 3) \\  =  - 4 \sqrt{3}  - ( { - 2 \sqrt{3}) }^{2} -  {3}^{2}   \\  =  - 4 \sqrt{3}  - (4 \times 3) - 9 \\  =  - 4 \sqrt{3}  - 12 - 9 \\  =  - 4 \sqrt{3}  - 21

Plz mark as brainlist

Hope it helps you

Similar questions