Math, asked by Manmeet19, 10 months ago

If alpha and beta are zeros of the quadratic polynomial 4x^2-5x+1 then find:
i)
  \alpha  {}^{4}  +  \beta  {}^{4}
ii)
 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  -  \alpha  \beta

Answers

Answered by Abhishek474241
2

Given

if \alpha\:&\beta are zeros of the quadratic polynomial 4x²-5x+1

To find

1. \alpha {}^{4} + \beta {}^{4}

2. \frac{1}{ \alpha } + \frac{1}{ \beta } - \alpha \beta

Solution

  1.  \alpha  + \beta=\frac{-b}{a}

 \alpha  + \beta=\frac{5}{4}

&

\implies\alpha\times \beta=\frac{c}{a}

\implies\alpha\times \beta=\frac{1}{4}

Now,

 \alpha {}^{4} + \beta {}^{4}

 \implies\alpha {}^{4} + \beta {}^{4}=(\alpha^2  + \beta^2)^2-2\alpha^2\times \beta^2

Putting the values

\implies \alpha {}^{4} + \beta {}^{4} =\frac{5}{4}-2 (\alpha\times \beta)^2

\implies \alpha {}^{4} + \beta {}^{4} =\frac{5}{4}-2 (\frac{1}{4})^2

\implies \alpha {}^{4} + \beta {}^{4} =\frac{5}{4}- (\frac{1}{8})

\implies \alpha {}^{4} + \beta {}^{4} =\frac{10-1}{8}

\implies \alpha {}^{4} + \beta {}^{4} =\frac{9}{8}

2.

 \frac{1}{ \alpha } + \frac{1}{ \beta } - \alpha \beta

\implies \frac{\alpha+\beta-\alpha^2\beta^2 }

\implies \frac{\alpha+\beta-\alpha^2\beta^2 }=\frac{20-1}{4}

\implies \frac{\alpha+\beta-\alpha^2\beta^2 }=\frac{19}{4}

Similar questions