Math, asked by nitingangwal18, 1 year ago

if alpha and beta are zeros of x^2+7x+12 find the value of 1÷alpha + 1÷beta -2alpha beta

Answers

Answered by assingh
7

x² + 7x +12
Alpha + beta = -7
Alpha * beta = 12
I/alpha +1/beta =(al + bet)/all*bet
= -7/12
And 2al.bet = 24
-7/12- 24
= -283/12

Answered by Pitymys
2

Given that  \alpha ,\beta  are the roots of  x^2+7x+12=0 .

Then  \alpha +\beta =-7,\alpha \beta =12 .

Now the value of the expression  \frac{1}{\alpha}  +\frac{1}{\beta}  -2\alpha \beta is

 \frac{1}{\alpha}  +\frac{1}{\beta}  -2\alpha \beta =\frac{\alpha +\beta}{\alpha \beta} -2\alpha \beta    \\<br />\frac{1}{\alpha}  +\frac{1}{\beta}  -2\alpha \beta =\frac{-7}{12} -2(12)=-\frac{295}{12}

Similar questions