Math, asked by prathabhagoria, 11 months ago

If alpha and beta are zeros of xsquare + 4x +3 write the polynomial whose zero are (1+B/alpha) and (1+alpha/beta)???​

Answers

Answered by Saby123
10

Correct Question -

If alpha and beta are zeros of the following polynomial -  {x}^2 + 4x +3 write the polynomial whose zeroes are  \dfrac{ 1 + \beta }{ \alpha } and  \dfrac{1 + \alpha }{ \beta }

Solution -

We have to write the polynomial whose zeroes are  \dfrac{ 1 + \beta }{ \alpha } and  \dfrac{1 + \alpha }{ \beta }

So,

 \sf{ Sum \: Of \: Zeroes \: :- } =  \dfrac{ \alpha  +  \beta  + 2 \alpha  \beta }{ \alpha  \beta }

 \sf{ In \: the \: given \: polynomial \:: } {x}^2 + 4x +3 \\ \\ \sf{ Sum Of Zeroes \::- \dfrac{ -b}{a} = -4 } \\ \\ \sf{ Product Of Zeroes \::- \dfrac{ c}{a} = 3 } \\  \\ So, \\ \\ \: \alpha + \beta = -4 \\ \\ \alpha \beta = 3  \\ \sf{ So \: Sum \: Of \: Zeroes \: :- } =  \dfrac{ \alpha  +  \beta  + 2 \alpha  \beta }{ \alpha  \beta } \\ \\ = \dfrac{ -4 + 6 }{ 3 } \\ \\ => \dfrac{2}{3}

 \sf{ We \: know \: that \: - } \\ \\ \sf{ A \:  polynomial \: can \: be \: written \: as \: - } \\ \\ {x}^2 - sx + p = 0 \\ \\ \sf{ Where \: - } \\ \\ \sf{ s \: is \: The \: Sum \: Of \: Roots } \\ \\ \sf{ p \: is \: The \: Product \: Of \: Roots } \\ \\ \tt{ Substituting \: the \: required \: values \: - } \\ \\ => { x } ^ 2 - \dfrac{2x}{3} + 3 = 0 \\ \\ => 3 { x } ^ 2 - 2x + 9 = 0 .............. [ A ]

Similar questions