Math, asked by Aashu8984, 1 year ago

If alpha and beta be the roots of ax2 -bx+b=0 the value of rootalpha/beta+rootbeta/alpha is

Answers

Answered by sahuraj457
6
roots are α and β
 \alpha  +  \beta  =  -  \frac{b}{a} =  -  \frac{ - b}{a}   \\  \alpha  \beta  =  \frac{c}{a}  =  \frac{b}{a}  \\   \sqrt{ \frac{ \alpha }{ \beta } }  +  \sqrt{ \frac{ \beta }{ \alpha } }  \\  \frac{ \sqrt{ \alpha } }{ \sqrt{ \beta } }  +  \frac{ \sqrt{ \beta } }{ \sqrt{ \alpha } }  \\  \frac{ \alpha  +  \beta }{ \sqrt{ \alpha  \beta } }  \\  \frac{ \frac{ - b}{a} }{ \sqrt{ \frac{b}{a} } }  \\  -  \frac{b \sqrt{a} }{a \sqrt{b} }  \\  -  \sqrt{ \frac{b}{a} }
please follow me
Answered by mentaharshil81918932
0

Step-by-step explanation:

roots are α and β

\alpha + \beta = - \frac{b}{a} = - \frac{ - b}{a} \\ \alpha \beta = \frac{c}{a} = \frac{b}{a} \\ \sqrt{ \frac{ \alpha }{ \beta } } + \sqrt{ \frac{ \beta }{ \alpha } } \\ \frac{ \sqrt{ \alpha } }{ \sqrt{ \beta } } + \frac{ \sqrt{ \beta } }{ \sqrt{ \alpha } } \\ \frac{ \alpha + \beta }{ \sqrt{ \alpha \beta } } \\ \frac{ \frac{ - b}{a} }{ \sqrt{ \frac{b}{a} } } \\ - \frac{b \sqrt{a} }{a \sqrt{b} } \\ - \sqrt{ \frac{b}{a} }

please follow me

Similar questions