if alpha and beta be the zeros of polynomial xsq. +4x-3 find the quadratic polynomial whose zeros are( 1 +alpha/beta) (1+beta/alpha)
Answers
Answered by
2
In p(x) = x² + 4 x - 3
Then,
Sum of zeroes = -b/a ⇒ -4/1 ⇒ -4
Product of zeroes = c/a ⇒ -3/1 ⇒ -3
__________________________________________________________
New sum of zeroes = (1+α)/β + (1+β)/α
= α(1+α) + β(1+β) / αβ
= (α + α² + β + β²) / αβ
= ((α+β) + (α+β)² - 2αβ) / αβ
= (-4 + (-4)² - 2(-3) ) / (-3)
= (-4 + 16 + 6) / (-3)
= -18/3 ⇒ -6
New product of zeroes = ((1+α) / β) × ((1+β) / α)
= (1+α)(1+β) / αβ
= ((α+β) + αβ + 1) / αβ
= (-4 + (-3) + 1) / (-3)
= -6/-3
= 2
__________________________________________________________
Then new polynomial = x² - (sum of zeroes)x + (product of zeroes)
= x² -(-6)x + 2
= x² + 6 x + 2
__________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
Then,
Sum of zeroes = -b/a ⇒ -4/1 ⇒ -4
Product of zeroes = c/a ⇒ -3/1 ⇒ -3
__________________________________________________________
New sum of zeroes = (1+α)/β + (1+β)/α
= α(1+α) + β(1+β) / αβ
= (α + α² + β + β²) / αβ
= ((α+β) + (α+β)² - 2αβ) / αβ
= (-4 + (-4)² - 2(-3) ) / (-3)
= (-4 + 16 + 6) / (-3)
= -18/3 ⇒ -6
New product of zeroes = ((1+α) / β) × ((1+β) / α)
= (1+α)(1+β) / αβ
= ((α+β) + αβ + 1) / αβ
= (-4 + (-3) + 1) / (-3)
= -6/-3
= 2
__________________________________________________________
Then new polynomial = x² - (sum of zeroes)x + (product of zeroes)
= x² -(-6)x + 2
= x² + 6 x + 2
__________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Similar questions