Math, asked by JAYANTH3070, 1 year ago

if alpha and beta be the zeros of polynomial xsq. +4x-3 find the quadratic polynomial whose zeros are( 1 +alpha/beta) (1+beta/alpha)

Answers

Answered by nitthesh7
2
In p(x) = x² + 4 x - 3

Then,

Sum of zeroes = -b/a ⇒ -4/1 ⇒ -4

Product of zeroes = c/a ⇒ -3/1 ⇒ -3
__________________________________________________________

New sum of zeroes = (1+α)/β + (1+β)/α

                                = α(1+α) + β(1+β) / αβ

                                = (α + α² + β + β²) / αβ

                                = ((α+β) + (α+β)² - 2αβ) / αβ

                                = (-4 + (-4)² - 2(-3) ) / (-3)

                                = (-4 + 16 + 6) / (-3)

                                = -18/3 ⇒ -6

New product of zeroes = ((1+α) / β) × ((1+β) / α)

                                     = (1+α)(1+β) / αβ

                                     = ((α+β) + αβ + 1) / αβ

                                     = (-4 + (-3) + 1) / (-3)

                                     = -6/-3

                                     = 2
__________________________________________________________

Then new polynomial = x² - (sum of zeroes)x + (product of zeroes)

                                   = x² -(-6)x + 2

                                   = x² + 6 x + 2
__________________________________________________________

☺☺☺ Hope this Helps ☺☺☺

nitthesh7: if u find it as most helpful pls mark it as brainliest
Similar questions