If alpha and beta be the zeros of X^2-2x-8,then find the value of alpha square +beta square
Answers
Answer:
20
Step-by-step explanation:
We know,
quadratic polynomials / equations represent sum and product of their roots as S and P in the equation in form of x^2 - Sx + P = 0.
Therefore, here, in polynomial x^2 - 2x - 8
Sum of roots = 2
Product of roots = - 8
Here,
⇒ α^2 + β^2
⇒ α^2 + β^2 + 2αβ - 2αβ
⇒ ( α + β )^2 - 2αβ { using a^2 + b^2 + 2ab = ( a + b )^2}
⇒ ( sum of roots )^2 - 2( product of roots )
⇒ ( 2 )^2 - 2( - 8 )
⇒ 4 - 2( - 8 )
⇒ 4 + 16
⇒ 20
Answer:
20
Step-by-step explanation:
Given that -
- α and β are the zeroes of the quadratic polynomial x²- 2x - 8.
We know that,
Quadratic polynomial are represented in the form of ax² + bx + c. Here,
- a = 1
- b = - 2
- c = - 8
Sum of zeroes =
⇒ α + β =
⇒ α + β = 2
Product of zeroes =
⇒ α β =
⇒ α β = - 8
We need to find : α² + β²
⇒ α² + β²
⇒ α² + β² + 2αβ - 2αβ
[ Identity used : x² + y² + 2xy = (x + y)².]
⇒ (α + β)² - 2αβ
⇒ (2)² - 2 (-8)
⇒ 4 + 16
⇒ 20