Math, asked by ButterFliee, 3 months ago

If α (alpha) and β (beta) be two roots of the equation x² – 64x + 256 = 0. Then the value of -

(a.) (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸

(b.) (256α/α² + 256) + (256β/β² + 256)

JEE MAINS - 2020​

Answers

Answered by pandaXop
140

Values = 2 & 8 Respectively

Step-by-step explanation:

Given:

  • Alpha and beta are the two roots of equation.
  • Equation is x² – 64x + 256 = 0

To Find:

  • Value of

  1. (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸
  2. (256α/α² + 256) + (256β/β² + 256)

Solution: Basic formulae and concepts to be used here

  • α + β = –b/a

  • αβ = c/a

  • m⁵ × m³ = m(³ + ⁵) ← If bases are same then powers will be added.

  • m² × n² = (mn)² ← If bases are different and powers are same.

Let's solve the first one -

➟ (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸

➟ α⅜ / β⅝ + β⅜ / α⅝ { taking LCM }

➟ α⅜ × β⅝ + β⅝ × β⅜ / β⅝ × α⅝

➟ α¹ + β¹ / αβ⅝

➟ α + β / αβ⅝

➟ –b/a / (c/a)⅝

➟ –(–64) / (256)⅝

➟ 64 / {(16)²}⅝

➟ 64 / [{(2)⁴}²]⅝

➟ 64 / 2⁵

➟ 64 / 32 = 2

Hence, the value of (α³/β⁵)¹/⁸ + (β³/α⁵)¹/⁸ is 2.

_________________________

Let's move to the second question.

  • (256α/α² + 256) + (256β/β² + 256)

➮ Given equation is x² – 64x + 256 = 0

  • Putting the value α in the place or x in above equation.

  • We got α² – 64α + 256 = 0

➮ α² – 64α + 256 = 0

➮ α² + 256 = 64α

  • Multiplying both sides by 4.

➮ 4 × (α² + 256) = 4 × 64α

➮ 4 x (α² + 256) = 256α

➮ 4 = 256α / α² + 256ㅤㅤㅤㅤㅤ(eqⁿ i )

Now again

  • Putting the value β in the place or x in above equation.

  • We got β² – 64β + 256 = 0

➯ β² – 64β + 256 = 0

➯ β² + 256 = 64β

  • Multiplying both sides by 4.

➯ 4 × (β² + 256) = 4 × 64β

➯ 4 = 256β / β² + 256ㅤㅤㅤㅤㅤ(eqⁿ ii )

Let's put the values of both equations in the second question.

\implies{\rm } (256α/α² + 256) + (256β/β² + 256)

\implies{\rm } 4 + 4

\implies{\rm } 8

Hence, the value of (256α/α² + 256) + (256β/β² + 256) is 8.


ButterFliee: Awesome as always! (◔‿◔)
pandaXop: Thanks as always
Answered by SavageBlast
150

Given:-

  • α and β be two roots of the equation x² – 64x + 256 = 0.

To Find:-

  • Value of (\dfrac{α³}{β³})^{⅛}+(\dfrac{β³}{α³})^{⅛}

  • (\dfrac{256α}{α² + 256}) + (\dfrac{256β}{β² + 256})

Formula used:-

  • α + β = \dfrac{-b}{a}

  • αβ = \dfrac{c}{a}

Solution:-

⟹(\dfrac{α³}{β³})^{⅛}+(\dfrac{β³}{α³})^{⅛}

⟹(\dfrac{α^{⅜}}{β^{⅝}})+(\dfrac{β^{⅜}}{α^{⅝}})

⟹\dfrac{α^{⅜}×α^{⅝}+β^{⅜}×β^{⅝}}{(αβ)^{⅝}}

⟹\dfrac{α^{\frac{8}{8}}+β^{\frac{8}{8}}}{(αβ)^{⅝}}

⟹\dfrac{α¹+β¹}{(αβ)^{⅝}}

⟹\dfrac{α + β}{αβ^{⅝}}

⟹\dfrac{\dfrac{-b}{a}}{(\dfrac{c}{a})^{⅝}}

⟹\dfrac{–(–64)}{(256)^{⅝}}

⟹\dfrac{64}{(16)^{2×\frac{5}{8}}}

⟹\dfrac{64}{(4)^{2×\frac{5}{4}}}

⟹\dfrac{64}{(2)^{2×\frac{5}{2}}}

⟹\dfrac{64}{2⁵}

⟹\dfrac{64}{32}

⟹\:2

Hence, Value of (\dfrac{α³}{β³})^{⅛}+(\dfrac{β³}{α³})^{⅛} is \:2.

━━━━━━━━━━━━━━━━━━━━━━━━━

Now, Solving second part:-

⟹\:(\dfrac{256α}{α²  + 256}) + (\dfrac{256β}{β² + 256})

As we know, α and β be two roots of the equation x² – 64x + 256 = 0.

So, by substituting the value of x by α.

⟹\:α²\: –\: 64α + 256 = 0

⟹\:α²  \:+\: 256 =  64α

We can't simply further so, we will multiply 4 both the sides to simplify further.

⟹\:4(α²  + 256) = (64α)×4

⟹\:4(α²  + 256) = 256α

⟹\:\dfrac{256α}{α²  + 256}=4 ____{1}

Now, we will substitute x with β.

⟹\:β²\: – \:64β + 256 = 0

⟹\:β² \: +\: 256 =  64β

We can't simply further so, we will multiply 4 both the sides to simplify further.

⟹\:4(β²  + 256) = (64β)×4

⟹\:4(β²  + 256) = 256β

⟹\:\dfrac{256β}{β²  + 256}=4 ____{2}

Putting {1} and {2} in (\dfrac{256α}{α²  + 256}) + (\dfrac{256β}{β² + 256})

⟹\:(\dfrac{256α}{α²  + 256}) + (\dfrac{256β}{β² + 256})

⟹\:4+4

⟹\:8

Hence, the value of {\bold{(\dfrac{256α}{α²  + 256}) + (\dfrac{256β}{β² + 256})}} is 8.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions