Math, asked by BottleShoot, 9 months ago

If alpha and beta be zeros of x²-6x-2=0 With alpha > beta if an= alpha^n-Beta^n N>=1 Find value of[a 10 - 2(a8)]/2a9

Answers

Answered by Anonymous
10

Correct Question:

If \sf{\alpha} and \sf{\beta} be the zeros of polynomial \sf{x^2 - 6x - 2 = 0} with \sf{\alpha > \beta} \sf{a_n = {\alpha}^{n} - {\beta}^{n}} for all n  \geq 1Find the value of \sf{ \dfrac{a_{10}- 2.a_8}{2a_9} }

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given an equation \sf{x^2-6x-2 = 0}
  • \sf{\alpha} and \sf{\beta} are zeros of given equation
  • \sf{a_n = {\alpha}^{n} - {\beta}^{n}}

To Find:

  • We have to find the value of
  •  \\ \sf{\dfrac{a_{10} - 2.a_8}{2a_9}}

Solution:

We have been given that \sf{\alpha} and \sf{\beta} are the zeros of polynomial

\hookrightarrow \sf{x^2 - 6x - 2 = 0}

________________________________

\underline{\large\mathfrak\orange{According  \: to \: the \: Question:}}

\sf{\alpha} and \sf{\beta} are the roots of given polynomial

Hence they will satisfy the given polynomial

\\

\blue{\bigstar}\: \: \underline{\large\sf{\pink{Putting \: x = \alpha}}}

\hookrightarrow \sf{ {\alpha}^{2} - 6 \alpha - 2 = 0}

\hookrightarrow \sf{{\alpha}^{2} - 2 = 6 \alpha}

\hookrightarrow \boxed{\sf{{\alpha}^{2} - 2 = 6 \alpha}} \\ \\ -------------- ( 1 )

\blue{\bigstar} \: \: \underline{\large\sf{\pink{Putting \: x = \beta}}}

\hookrightarrow \sf{{\beta}^{2} - 6 \beta - 2 = 0}

\hookrightarrow \sf{{\beta}^{2} - 2 = 6 \beta}

\hookrightarrow \boxed{\sf{{\beta}^{2} - 2 = 6 \beta}} ---------------- ( 2 )

_________________________________

\underline{\large\mathfrak\orange{We \: have  \: to \: find:}}

\implies \sf{\dfrac{a_{10}- 2a_8}{2a_9} }

Using the given condition

\boxed{\sf{\green{a_n = {\alpha}^{n} - {\beta}^{n}}}}

\implies \sf{\dfrac{({\alpha}^{10} - {\beta}^{10}) - 2({\alpha}^8-{\beta}^8)}{2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{{\alpha}^{10} - {\beta}^{10} - 2{\alpha}^8 - 2{\beta}^8}{2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{({\alpha}^{10} - 2{\alpha}^{8}) - ({\beta}^{10}- 2{\beta}^{8} )} {2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{{\alpha}^8({\alpha}^2 - 2 ) - {\beta}^8({\beta}^2 - 2 )} {2({\alpha} ^9-{\beta}^9)}} \\ \\

Putting values from eqn ( 1 ) and ( 2 )

\\ \\ \implies \sf{\dfrac{{\alpha}^8(6 \alpha) - {\beta}^8(6 \beta)} {2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{6{\alpha}^9- 6{\beta}^9} {2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{6 ( {\alpha}^9 - {\beta}^9 ) } {2({\alpha}^9-{\beta}^9)}} \\ \\

\implies \sf{\dfrac{6 \times \cancel{( {\alpha}^9 - {\beta}^9 )} } {2 \times \cancel{({\alpha}^9-{\beta}^9)}}} \\ \\

\implies \sf{\dfrac{6}{2} = 3 \: ( Answer ) }  \\ \\

_____________________________

\LARGE\sf{\red{A}\green{n}\orange{s}\pink{w}\blue{e}\purple{r}} : \boxed{\sf{\large \red{\dfrac{a_{10} - 2.a_8}{2a_9} = 3 }}}

_____________________________

Answered by joshkjomon
1

Answer:

ur answer is a10-2.a8/2a9=3

Step-by-step explanation:

pls mark as brainliest , rate , thank and follow me

Similar questions