if alpha and beta equal to 3 and Alpha Cube + beta cube equal to 9 find the quadratic equation whose roots are alpha and beta
Attachments:
Answers
Answered by
9
Solution:
We have been given that a + ß = 3 and a³ +ß³ = 9.
- a + ß = 3 ....(i)
- a³ +ß³ = 9 ...(ii)
Solve Equation (ii):
- a³ +ß³ = 9
⇒ a³ + b³ = ( a +b)(a²-ab+b²)
⇒ a³ + b³ = ( a+b)[(a+b)² -2ab -ab ]
⇒ 9 = (3)[(3)² -3ab ]
⇒ 9 = 3[9 - 3ab]
⇒ 9 = 27 -9ab
⇒ 9 + 27 = -9ab
⇒ 36 = -4ab
⇒ ab = -4
We have to find Quadratic Equation which zeros are a and ß.
f(x) = x² -(a+ß)x + aß
⇒ x² - (3)x + (-4) = 0
⇒ x² - 3x - 4 = 0
Therefore, Required Quadratic Equation is x² - 3x - 4 = 0.
Similar questions