Math, asked by annirudh, 1 year ago

if alpha and beta of a polynomial x^2-7x+k are such that alpha-beta =1 then find the value of K

Answers

Answered by MaheswariS
14

\underline{\textbf{Given:}}

\mathsf{\alpha\;and\;\beta\;are\;zeroes\;of\;x^2-7x+k\;and\;\alpha-\beta=1}

\underline{\textbf{To find:}}

\textsf{The value of k}

\underline{\textbf{Solution:}}

\mathsf{Consider,\;x^2-7x+k}

\boxed{\mathsf{Sum\;of\;zeroes=\dfrac{-b}{a}}}

\mathsf{\alpha+\beta=\dfrac{7}{1}}

\mathsf{\alpha+\beta=7}

\boxed{\mathsf{Product\;of\;zeroes=\dfrac{c}{a}}}

\mathsf{\alpha\,\beta=\dfrac{k}{1}}

\mathsf{\alpha\,\beta=k}

\mathsf{Now,}

\mathsf{(\alpha-\beta)^2=(\alpha+\beta)^2-4\alpha\,\beta}

\mathsf{(1)^2=(7)^2-4\,k}

\mathsf{1=49-4\,k}

\mathsf{4\,k=49-1}

\mathsf{4\,k=48}

\mathsf{k=\dfrac{48}{4}}

\implies\boxed{\boxed{\mathsf{k=12}}}

\underline{\textbf{Find more:}}

if alpha and beta are the zeros of the polynomial 3x^2 - 4x - 7 then form a quadratic equation whose zeroes are 1/alpha and 1/beta

https://brainly.in/question/4436832

Answered by krishachra30
0

Step-by-step explanation:

hope you understood please mark Brainalist

Attachments:
Similar questions