Math, asked by Anonymous, 1 year ago

if alpha and beta r the roots of the equation x square - px+q=0 and alpha 1, beta 1 be the roots of the equation x square - px+p=o, then find 1 by alpha1beta+ 1by alphabeta1+1by alphaalpha1+1bybetabeta1


Lifeis1time: hii
Lifeis1time: from which book this question
Lifeis1time: okk
Lifeis1time: I will try dear
Lifeis1time: Yuup

Answers

Answered by Anonymous
71
▶ Error :-

→ In equation 2 , it will be x² - qx + p = 0 instead of x² - px + p = o .


▶ Question :-

→ If  \alpha and  \beta are the roots of the equation x² - px + q = 0 and  \alpha _1  ,  \beta _1 be the roots of the equation x² - qx + p = 0 , then find
 \frac{1}{ \alpha_1  \beta }  +  \frac{1}{ \alpha  \beta_1 }  +  \frac{1}{ \alpha  \alpha_1 }  +  \frac{1}{ \beta  \beta_1 } . \\


▶ Answer :-


→ 1st Case :—


 \alpha and  \beta are the roots of the equation x² - px + q = 0 .

Then,
 \sf \implies \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - p)}{1}  = p.  \\  \\ and  \\  \\  \sf \implies \alpha  \beta  =  \frac{c}{a}  =  \frac{q}{1}  = q.


→ 2nd Case :—

 \alpha _1  and  \beta _1 are the roots of equation x² - qx + p = 0 .

Then,
 \sf \implies \alpha _1 +  \beta _1 =  \frac{ - b}{a}  =  \frac{ - ( - q)}{1}  = q.  \\  \\ and  \\  \\  \sf \implies \alpha _1 \beta _1 =  \frac{c}{a}  =  \frac{p}{1}  = p.


▶ Now,


→ Let's find :—

 \sf  = \frac{1}{ \alpha_1  \beta }  +  \frac{1}{ \alpha  \beta_1 }  +  \frac{1}{ \alpha  \alpha_1 }  +  \frac{1}{ \beta  \beta_1 } . \\  \\  \sf =  \frac{1}{ \alpha_1  \beta }  +  \frac{1}{ \alpha  \alpha_1 }  +  \frac{1}{ \alpha   \beta _1 }  +  \frac{1}{ \beta  \beta_1 } . \\  \\  \sf =  \frac{1}{ \alpha_1 } ( \frac{1 }{ \alpha }  +  \frac{1}{ \beta } ) +  \frac{1}{ \beta_1 } ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ). \\  \\  \sf = ( \frac{1 }{ \alpha _1}  +  \frac{1}{ \beta_1 } )( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ). \\  \\  \sf = ( \frac{  \beta_1 +  \alpha_1 }{ \alpha _1 \beta _1} )( \frac{ \beta  +  \alpha }{ \alpha  \beta } ). \\  \\  \sf =  \frac{ \cancel q}{ \cancel p}  \times  \frac{ \cancel{p}}{ \cancel q} . \\  \\  \huge \boxed{ \boxed{ \pink{ \sf = 1.}}}



✔✔ Hence, 1 is the answer ✅✅ .



 \huge \boxed{ \green{ \mathcal{THANKS}}}

Anonymous: thanks 2 all of you
Answered by mantu66
40
 \alpha and  \beta are the roots of the equation x² - px + q = 0 .


  \implies \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - p)}{1}  = p.  \\  \\ and  \\  \\   \implies \alpha  \beta  =  \frac{c}{a}  =  \frac{q}{1}  = q.




 \alpha _1  and  \beta _1 are the roots of equation x² - qx + p = 0 .


 \implies \alpha _1 +  \beta _1 =  \frac{ - b}{a}  =  \frac{ - ( - q)}{1}  = q.  \\  \\ and  \\  \\  \implies \alpha _1 \beta _1 =  \frac{c}{a}  =  \frac{p}{1}  = p.




   = \frac{1}{ \alpha_1  \beta }  +  \frac{1}{ \alpha  \beta_1 }  +  \frac{1}{ \alpha  \alpha_1 }  +  \frac{1}{ \beta  \beta_1 } . \\  \\  =  \frac{1}{ \alpha_1  \beta }  +  \frac{1}{ \alpha  \alpha_1 }  +  \frac{1}{ \alpha   \beta _1 }  +  \frac{1}{ \beta  \beta_1 } . \\  \\  =  \frac{1}{ \alpha_1 } ( \frac{1 }{ \alpha }  +  \frac{1}{ \beta } ) +  \frac{1}{ \beta_1 } ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ). \\  \\   = ( \frac{1 }{ \alpha _1}  +  \frac{1}{ \beta_1 } )( \frac{1}{ \alpha }  +  \frac{1}{ \beta } ). \\  \\   = ( \frac{  \beta_1 +  \alpha_1 }{ \alpha _1 \beta _1} )( \frac{ \beta  +  \alpha }{ \alpha  \beta } ). \\  \\   =  \frac{  q}{ p}  \times  \frac{ {p}}{  q} . \\  \\  = 1.




kingArsh07: hi
Similar questions