Math, asked by Mukund135, 1 year ago

if alpha and betta are zeroes of f (x)=x2-p((x)+qfindalpha square +betta square​

Answers

Answered by Anonymous
2
Heya

_______________________________

p( x ) is linear function.

Alfa + Beta = p(x) / 1

And

Alfa × Beta = q/1

=>

Alfa² + Beta² = ( Alfa + Beta )² - 2 Alfa × Beta

=>

Alfa² + Beta² = { p(x) }² - 2q
Answered by pinquancaro
1

\alpha^2+\beta^2=p^2-2q

Step-by-step explanation:

Given : If alpha and beta are zeroes of  f(x)=x^2-px+q

To find : \alpha^2+\beta^2 ?

Solution :

If alpha and beta are zeroes of  f(x)=x^2-px+q

We know that,

\alpha+\beta=-\frac{b}{a}

\alpha\beta=\frac{c}{a}

Here, a=1, b=-p and c=q

\alpha+\beta=-\frac{-p}{1}

\alpha+\beta=p  .....(1)

\alpha\beta=\frac{q}{1}

\alpha\beta=q  ......(2)

\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta

Using (1) and (2),

\alpha^2+\beta^2=(p)^2-2q

\alpha^2+\beta^2=p^2-2q

#Learn more

If alpha and betta are the zeroes of 2x^2-9x+10, form the polynomial whose zeroes are 1/alpha and 1/betta​

https://brainly.in/question/16471587

Similar questions