Math, asked by muaikeie, 11 months ago

if alpha and better are the roots of the equation x²minus2x minus3≈0, find the value of alpha plus better, alpha better and 1÷alpha, 1÷better

Answers

Answered by Anonymous
12

Step-by-step explanation:

x² - 2x - 3 = 0

alpha + beta = -(-2)/1 = 2/1 = 2

alpha*beta = -3/1 = -3

(alpha - beta)² = (alpha+beta)² - 4alpha*beta

= 4 - 4(-3)

= 4 + 12 = 16

alpha - beta = 4

alpha + beta = 2

2 alpha = 6

alpha = 3

beta = alpha - 4 = 3-4 = -1

1/alpha = 1/3

1/beta = 1/-1 = -1

Answered by BrainlyConqueror0901
33

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \alpha+\beta=2}}

{\bold{\therefore \alpha\beta=-3}}

{\bold{\therefore \frac{1}{\alpha}=\frac{1}{3}}}

{\bold{\therefore \frac{1}{\beta}=-1}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline\bold{Given : }  \\  \implies  \alpha  \: and \:  \beta  \in \:( {x}^{2}  - 2x - 3 = 0) \\  \\ \underline\bold{To \: Find : } \\\implies   \alpha  +  \beta  = ? \\  \\ \implies   \alpha  \beta  = ?\\  \\  \implies  \frac{1}{ \alpha }  = ? \\  \\ \implies  \frac{1}{  \beta  }  = ?

• According to given question :

 \bold{Using \: middle \: term \: splitting :} \\  \implies  {x}^{2}  - 2x - 3 = 0 \\  \\  \implies  {x}^{2}  - 3x + x - 3 = 0 \\  \\  \implies  x(x - 3) + 1(x - 3) = 0 \\   \\  \implies (x + 1)(x - 3)  = 0\\ \\  \implies  \alpha  =  3 \\  \\  \implies  \beta  =  - 1 \\  \\  \bold{For \: finding \: values : } \\ \bold{\implies  \alpha  +  \beta  = 3 + ( - 1) = 3 - 1 = 2 }\\  \\   \bold{\implies  \alpha  \beta  = 3 \times  - 1 =  - 3 }\\  \\   \bold{\implies  \frac{1}{ \alpha }  =  \frac{1}{3}}  \\  \\ \bold{\implies  \frac{1}{ \beta }  =  \frac{1}{ - 1}  =   - 1}

Similar questions