if alpha and bita are solution of a cost thita +bsin thita, then prove that cos(alpha-bita)=a2-b2÷a2+b2
Answers
Answered by
0
Answer:
Step-by-step explanation:
If alpha and beta are solution of the
acosθ + bsinθ = c
Then
acosα + bsinα = c
and
acosβ+bsinβ = c
acosα + bsinα =acosβ+bsinβ
acosα - acosβ = bsinβ - bsinα
a( cosα - cosβ) = b(sinβ - sinα)
sinβ - sinα/ cosα - cosβ = a/b
[sinβ - sinα/ cosα - cosβ]² = (a/b)²
Apply componendo dividendo rule and solve left hand side. Combine the terms and take common. You will be left with desired result.
(sinβ - sinα) ² - (cosα - cosβ)²/ (sinβ - sinα) ² + (cosα - cosβ)² = a² - b²/a² + b²
LHS
sin²β + sin²α - 2sinαsinβ - cos²α - cos²β+2cosαCosβ / sin²β + sin²α - 2sinαsinβ + cos²α + cos²β - 2cosαCosβ
=> - cos2β - cos2α + 2cos(α+β)/ 1 + 1 - 2cos(α+β)
=> -2cos(α+β)cos(α-β)+2cos(α+β)/2 - 2cos(α+β)
=> cos(α+β)
=> cos(α+β) = a² - b²/a² + b²
Similar questions
Math,
6 months ago
Science,
6 months ago
Science,
6 months ago
World Languages,
1 year ago
Math,
1 year ago
Business Studies,
1 year ago
Physics,
1 year ago