Math, asked by manveersinghbura0001, 4 months ago

if alpha and bita are the roots if equation x^2+px+q=0 find alphacube+bitacube​

Answers

Answered by snehitha2
1

Answer :

α³ + β³ = 3pq - p³

Step-by-step explanation :

Quadratic Polynomials :

✯ It is a polynomial of degree 2

✯ General form :

        ax² + bx + c  = 0

✯ Determinant, D = b² - 4ac

✯ Based on the value of Determinant, we can define the nature of roots.

      D > 0 ; real and unequal roots

      D = 0 ; real and equal roots

      D < 0 ; no real roots i.e., imaginary

✯ Relationship between zeroes and coefficients :

        ✩ Sum of zeroes = -b/a

        ✩ Product of zeroes = c/a

________________________________

Given quadratic equation,

 x² + px + q = 0

It is of the form ax² + bx + c = 0

  a = 1 , b = p , c = q

α and β are the roots of the given equation.

⇒ Sum of roots = -b/a

         α + β   =   -p/1

         α + β   =   -p

⇒ Product of roots = c/a

               αβ   =   q/1

               αβ   =   q

we know,

(x + y)³ = x³ + y³ + 3xy(x + y)

So, (α + β)³ = α³ + β³ + 3αβ(α + β)

      α³ + β³ = (α + β)³ - 3αβ(α + β)

                  = (-p)³ - 3(q)(-p)

                  = -p³ + 3pq

                  = 3pq - p³

∴ α³ + β³ = 3pq - p³

Answered by Anonymous
1

Refer the attachment......

Attachments:
Similar questions