Math, asked by bansalj254p78c9f, 1 year ago

If alpha and bita are the two zeros of the quadratic polynomial x^2-3x+7 find a quadratic polynomial whose zeroes are 1/alpha and 1/bita

Answers

Answered by Anonymous
2
ʜᴇy ʙʀᴏ
__________________________________________________________________________________________
x²-3x+7
 \alpha + \beta = - ( \frac{b}{a} )
 \alpha + \beta = - ( \frac{ - 3}{1} )

 \alpha + \beta = 3
 \alpha \beta = \frac{c}{a}
 \alpha \beta = \frac{7}{1}
 \alpha \beta = 7
ʟᴇᴛ ꜱ ᴀɴᴅ ᴩ ʙᴇ ᴛʜᴇ ꜱᴜᴍ ᴏꜰ ᴀɴᴅ ᴩʀᴏᴅᴜᴄᴛ ᴏꜰ ᴢᴇʀᴏꜱ...
s = \frac{1}{ \alpha } + \frac{1}{ \beta }
 = \frac{ \alpha + \beta }{ \alpha \beta }
 = \frac{3}{7}

 p = \frac{1}{ \alpha } \times \frac{1}{ \beta }
 = \frac{1}{ \alpha \beta }
 = \frac{1}{7}
ʟᴇᴛ ᴛʜᴇ ʀᴇqᴜɪʀᴇᴅ ᴩᴏʟyɴᴏᴍɪᴀʟ ɪꜱ x²-ꜱx+ᴩ
ɪᴇ=x²-3/7x+1/7
=7x²-3x+1
______________________________________________________________________
ʜᴏᴩᴇ ɪᴛ ʜᴇʟᴩꜱ
Answered by Anonymous
1
\orange{\boxed{\blue{\boxed{\green{Hope \: It \: May \: Help \: You}}}}}
Attachments:
Similar questions