Math, asked by minakshmisamanta21, 3 months ago

If alpha and bita are the zero of the quadratic polynomial f(x)=ax^2+b+c,
the evaluate alpha-bita​

Answers

Answered by SuitableBoy
35

{\large{\underbrace{\underline{\sf{Question}}}}}

Q) If alpha and beta are the zeroes of the quadratic polynomial f(x) = ax² + bx + c . Then , find alpha-beta.

 \\

{\large{\underbrace{\underline{\sf{Answer\:\checkmark}}}}}

 \\

\frak{Given}\begin{cases}\sf{Quadratic\;Polynomial=\bf{f(x)=ax^2+bx+c}}\\ \sf{Zeroes→\bf{ \alpha \; and \; \beta}}\end{cases}

 \\

To Find :-

  •   \alpha  -  \beta

 \\

Solution :-

We know ,

 \rm \mapsto \: sum \: of \: zeroes =  \alpha  +  \beta  =  \frac{ - b}{a} \: ....(i)  \\

&

 \mapsto \rm \: product \: of \: zeroes =  \alpha  \beta  =  \frac{c}{a}   \: ....(ii)\\

Squaring both sides of equation (i)

 \rightarrow \rm \:  {( \alpha  +  \beta )}^{2}  =   {( \frac{ - b}{a} )}^{2}  \\

 \rightarrow \rm \:  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  =  \frac{ {b}^{2} }{ {a}^{2} }  \\

From eq(ii)

 \rightarrow \rm \:   { \alpha }^{2}  +  {  \beta }^{2}  + 2 \frac{c}{a}  =  \frac{ {b}^{2} }{ {c}^{2} }  \\

  \rightarrow \rm \:  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ {b}^{2} }{ {c}^{2} }  -  \frac{2c}{a}  \\

 \rightarrow \rm \:  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ {b}^{2}  - 2ac}{ {a}^{2} }    \: .....(iii)\\

Now,

 \rightarrow \rm \:  {( \alpha  -  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  - 2 \alpha  \beta

from eq(iii) ,

 \rightarrow \rm \:  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2} - 2ac }{ {a}^{2} }  - 2 \frac{c}{a}  \\

 \rightarrow \rm \:  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2} - 2ac - 2ac }{ {a}^{2} }  \\

 \rightarrow \rm \:  {( \alpha  -  \beta )}^{2}  =  \frac{ {b}^{2}  - 4ac}{ {a}^{2} }  \\

  \rightarrow \rm \:  \alpha  -  \beta  =  \sqrt{ \frac{ {b}^{2} - 4ac }{ {a}^{2} } }  \\

 \rightarrow \rm \:  \underline{ \boxed{ \sf{ \pink{ \alpha  -  \beta  =  \frac{ \sqrt{ {b}^{2}  - 4ac} }{a} }}}}

So,

alpha - beta = b²-4ac/a .


Lovelycandy: Idea accha hai :p xD
SuitableBoy: Lol
Anonymous: Splendid Answer ! :D
SuitableBoy: Thanks :)
Seafairy: Perfect answer :)
SuitableBoy: @Seafairy Thanks ;; @garima610 LOL
Similar questions