Math, asked by romasevkani6904, 1 year ago

if alpha and bita are the zeroes if polynomial f(x)=ax2+bx+c then find 1/alpha 2+ 1/ bita2

Answers

Answered by jatin3621
27
Ax² + bx +c =0
zeroes α,β

sum of roots = α+β = -b/a
products of roots = αβ = c/a

1/α - 1/β = β-α / αβ   ............(1)

β-a = √(b² - 4ac/a² )      putting this value

1/α - 1/β  = √(b²-4ac/a²)  / c/a   =  √b²-4ac / c

hope this helps


plzzzz mark it as brainliest
Answered by dikshaagarwal4442
0

Answer:

      \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }  = \frac{b^{2} - 2ac }{2c^{2} }

Step-by-step explanation:

α and β are two zeroes of the polynomials that means α, β are two roots.

The given polynomial is: f(x) = ax² + bx + c

This is a quadratic polynomial.

  • The roots will be,     α = \frac{-b+\sqrt{b^{2}-4ac } }{2a}  and β = \frac{-b-\sqrt{b^{2}-4ac } }{2a}
  • α² = ( \frac{-b+\sqrt{b^{2}-4ac } }{2a})² = \frac{b^{2}+b^{2}-4ac - 2b\sqrt{b^{2}-4ac}   }{4a^{2} } = \frac{2b^{2}-4ac - 2b\sqrt{b^{2}-4ac}   }{4a^{2} }

  • β² = ( \frac{-b-\sqrt{b^{2}-4ac } }{2a})² = \frac{b^{2}+b^{2}-4ac + 2b\sqrt{b^{2}-4ac}   }{4a^{2} } = \frac{2b^{2}-4ac + 2b\sqrt{b^{2}-4ac}   }{4a^{2} }
  • α² + β² =  \frac{2b^{2}-4ac - 2b\sqrt{b^{2}-4ac}   }{4a^{2} } +  \frac{2b^{2}-4ac + 2b\sqrt{b^{2}-4ac}   }{4a^{2} } = \frac{b^{2} - 2ac }{2a^{2} }
  • αβ =   \frac{-b+\sqrt{b^{2}-4ac } }{2a} × \frac{-b-\sqrt{b^{2}-4ac } }{2a} = \frac{-b^{2}+b^{2} - 4ac }{4a^{2} } = -c/a
  • (αβ)² = (-c/a)² = c²/a²
  • We have to find out, \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }

                     \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} } = \frac{\alpha^{2} + \beta^{2}  }{\alpha^{2}* \beta^{2} }

                                 = \frac{b^{2} - 2ac }{2a^{2} } ÷ \frac{c^{2} }{a^{2} }  [ putting all the values]

                                 =  \frac{b^{2} - 2ac }{2a^{2} } × \frac{a^{2} }{c^{2} }

[ at the time of multiplication reciprocal will be taken.]

                        \frac{1}{\alpha^{2} } + \frac{1}{\beta^{2} }   = \frac{b^{2} - 2ac }{2c^{2} }

Similar questions