Math, asked by kotte7hills0007, 10 months ago

if alpha and bita are the zeroes of quadratic polynomial f(x)=6x2+x-2, then find 1/alpha + 1/bita ​

Answers

Answered by Anonymous
7

Step-by-step explanation:

f(x) = 6x² + x - 2

alpha & beta are the zeroes of above quadratic polynomial .

So , alpha + beta = -1/6

alpha×beta = -2/6 = -1/3

Now , 1/alpha + 1/beta

(alpha+beta)/(alpha*beta)

(-1/6)/(-1/3) = 1/6 × 3/1 = 3/6 = 1/2

Answered by Anonymous
8

\large{\underline{\underline{\mathfrak{Answer :}}}}

α + β/αβ = 1/2

\rule{200}{0.5}

\underline{\underline{\mathfrak{Step-By-Step-Explanation :}}}

Given :

  • Polynomial : 6x² + x - 2 = 0

_______________________

To Find :

We have to find the value of \sf{\frac{1}{\alpha} + \frac{1}{\beta}}

_______________________

Solution :

As, it is given that

\sf{\implies \frac{1}{\alpha} + \frac{1}{\beta}} \\ \\ \sf{\implies \frac{\alpha + \beta}{\alpha \beta}......(1)}

\rule{150}{2}

We know the formula to find the sum and product of zeroes.

\large{\boxed{\sf{Sum \: of \: zeroes(\alpha + \beta) = \frac{-b}{a}}}}

\sf{\implies \alpha + \beta = \frac{-1}{6}......(2)}

Now, product of zeroes

\large{\boxed{\sf{Product \: of \: zeroes (\alpha \beta) = \frac{c}{a}}}}

\sf{\implies \alpha \beta = \frac{-2}{6}} \\ \\ \sf{\implies \alpha \beta = \frac{-1}{3}......(3)}

\rule{150}{2}

Now, From equation (1), (2) and (3)

We get,

\sf{\implies \frac{\alpha + \beta}{\alpha \beta} =  \dfrac{ \dfrac{ \dfrac{-1}{6} }{-1} }{3}} \\ \\ \sf{\implies \frac{\alpha + \beta }{\alpha \beta} = \frac{3}{6}} \\ \\ \sf{\implies \frac{\alpha + \beta}{\alpha \beta} = \frac{1}{2}}

Similar questions