Math, asked by harsh0000763, 9 months ago

If alpha and bita are the zeroes of the polynomial 2x²+7x+5,write the value of
 \alpha  +  \beta  +  \alpha  \beta

Answers

Answered by amitkumar44481
61

AnsWer :

- 1.

Correct QuestioN :

If α and β are the zeroes of the polynomial 2x² + 7x + 5, write the value of α + β + α * β.

SolutioN :

We have, Polynomial.

→ 2x² + 7x + 5.

☛ Compare With General Expression.

→ ax² + bx + c.

Where as,

  • a = 2.
  • b = 7.
  • c = 5.

✎ Sum of Zero.

→ α + β = - b / a.

\rule{90}2

✎ Product Of Zero.

→ α * β = c / a.

\rule{90}2

So,

\tt \longmapsto\alpha + \beta + \alpha \beta = ?

 \tt \longmapsto\dfrac{-b}{a}+ \dfrac{c}{a}

 \tt \longmapsto\dfrac{-7}{2}+ \dfrac{5}{2}

\tt \longmapsto \dfrac{-7+5}{2}

\tt \longmapsto \dfrac{-2}{2}

\tt \longmapsto- 1.

Therefore, the value of α + β + α β = - 1.


RvChaudharY50: Perfect .
Answered by Anonymous
59

\bf\large{\underline{Question:-}}

If alpha and bita are the zeroes of the polynomial 2x²+7x+5,write the value of

 \alpha + \beta + \alpha \beta

\bf\large{\underline{Given:-}}

  • 2x²+7x+5

\bf\large{\underline{To\:find :-}}

  •  \alpha + \beta + \alpha \beta

\bf\large{\underline{Solution:-}}

we know ,

A general quadratic equation is

\tt→ax^2+bx+c

Where are a,b and c are numeric values.

Now,

From the given equation.

\tt→ 2x^2+7x+5\\\tt→ a=2\\\tt→b=7\\\tt→ c=5\\\tt→ Sum\:of\:zeroes = \alpha+\beta\\\tt→ \alpha+\beta=\frac{-b}{a}\\\tt→ \frac{-b}{a}=\frac{-7}{2}\\\tt→ product\:of\:zeroes =\alpha\beta\\\tt→ \alpha\beta=\frac{-c}{a}\\\tt→ \frac{c}{a}=\frac{5}{2}

So,

\tt→\alpha+\beta+\alpha\beta=?\\\tt→ \frac{-7}{2}+\frac{5}{2}\\\tt→ \frac{-7+5}{2}\\\tt→ \frac{-2}{2}\\\tt→ \alpha+\beta+\alpha\beta=-1

Hence,

\large\tt→{\underline{\fbox{\red{\alpha+\beta+\alpha\beta=-1}}}}


RvChaudharY50: Awesome.
Similar questions