Math, asked by paridhi7249, 1 month ago

If alpha and bita are the zeroes of the polynomial 5x^2 - 4x + 10, find the quadratic polynomial whose zeroes are 1/alpha and 1/bita....

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\: \alpha , \beta  \: are \: zeroes \: of \:  {5x}^{2} - 4x + 10}

We know that

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

So,

\rm :\longmapsto\: \alpha  \beta  = \dfrac{10}{5}  = 2

Also,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

So,

\rm :\longmapsto\: \alpha +   \beta  =  - \dfrac{( - 4)}{5}  = \dfrac{4}{5}

Now,

We have to form a quadratic polynomial whom zeroes are

\red{\rm :\longmapsto\:\dfrac{1}{ \alpha }, \dfrac{1}{ \beta }}

Let, we first find the sum of zeroes.

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{ \alpha } +  \dfrac{1}{ \beta }}

\rm \:  =  \:  \: \dfrac{ \beta   + \alpha }{ \alpha  \beta }

\rm \:  =  \:  \: \dfrac{4}{5}  \times \dfrac{1}{2}

\rm \:  =  \:  \: \dfrac{2}{5}

Now, we find product of zeroes.

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{ \alpha } \times \dfrac{1}{ \beta }}

\rm \:  =  \:  \: \dfrac{1}{ \alpha  \beta }

\rm \:  =  \:  \: \dfrac{1}{2}

So,

Required quadratic polynomial is given by

\rm :\longmapsto\:p(x) = k\bigg( { {x}^{2}  - \bigg(\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  \bigg) } x+ \dfrac{1}{ \alpha  \beta }  \bigg), \: where \: k \ne \: 0

On substituting the values, we get

\rm :\longmapsto\:p(x) = k\bigg( { {x}^{2}  - \dfrac{2}{5 }x} + \dfrac{1}{2}  \bigg), \: where \: k \ne \: 0

\rm :\longmapsto\:p(x) =  \dfrac{k}{10} \bigg( {10 {x}^{2}  - 4x} + 5  \bigg), \: where \: k \ne \: 0

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =   \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions