Math, asked by lakshaymaggu11, 1 year ago

If alpha and bita are the zeros of polynomial 3x2-2x-7 then find the value of alpha/ bita+ bita/alpha​

Answers

Answered by rajnid727
2

Answer:

this is my answer. if you like give thanks. My writing is not that good, but it is good .

Attachments:
Answered by brainlyheIper600
9

Answer:

༒ Given ➽

α and β are the zeros of the polynomial

 \sf p(s) = 3 {s}^{2}  - 6s + 4

___________________________

༒ To Calculate ➽

 \sf  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  + 2( \frac{1}{ \alpha } +  \frac{1}{ \beta }  ) +3\alpha\beta\\

___________________________

༒ Key point ➽

For any quadratic polynomial

 \bf a {x}^{2}  + bx + c \\  \\  \sf Sum \: of \: zeros =  \frac{ - b}{a}  \\  \\  \sf Product \: of \: zeros =  \frac{c}{a}

___________________________

༒ Solution ➽

Here,

α + β = 2

and

 \Large \bf \alpha  \beta  =  \frac{4}{3}

Now,

\sf  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  + 2( \frac{1}{ \alpha } +  \frac{1}{ \beta }  ) +3\alpha\beta\\  \\  \sf =  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  + 2( \frac{ \beta  +  \alpha }{ \alpha  \beta } )+3\alpha\beta\\  \\  =  \sf \frac{ { \alpha }^{2} +   \beta {}^{2}  + 2( \alpha  +  \beta ) }{ \alpha  \beta } +3\alpha\beta\\  \\   \sf =  \frac{ {( \alpha  +  \beta ) }^{2}  - 2 \alpha  \beta  + 2( \alpha  +  \beta )}{ \alpha  \beta }+3\alpha\beta \\     \{ \bf add \: and \: subtract \: 2 \alpha  \beta  \: in \: numerator \}

 \dfrac{ {2}^{2}   - 2( \dfrac{4}{3} ) + 2(2)}{ \dfrac{4}{3} } +3\times\frac{4}{3}\\  \\  \sf =  \dfrac{4 -  \dfrac{8}{3}  + 4}{ \dfrac{4}{3} }+4

 \sf =  \dfrac{ \dfrac{12 - 8 + 12}{ \cancel{3}} }{ \dfrac{4}{ \cancel{3}} }  +4\\  \\  \sf =  \frac{16}{4}  +4\\  \\ \Large \purple{  =  \bf8}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\large{\sf{\red{brainlyhelper600 }}}

Similar questions