Math, asked by sujitkumarghy7, 2 months ago

If alpha and bita are the zeros of the quadratic
polynomial p(s) = 3s² – 6s +4, find the value
Alpha/bita+bita/alpha+2(1/alpha+1/bita)+3alpha*bita​

Answers

Answered by SparklingBoy
518

༒ Given ➽

α and β are the zeros of the polynomial

 \sf p(s) = 3 {s}^{2}  - 6s + 4

___________________________

༒ To Calculate ➽

 \sf  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  + 2( \frac{1}{ \alpha } +  \frac{1}{ \beta }  ) +3\alpha\beta\\

___________________________

༒ Key point ➽

For any quadratic polynomial

 \bf a {x}^{2}  + bx + c \\  \\  \sf Sum \: of \: zeros =  \frac{ - b}{a}  \\  \\  \sf Product \: of \: zeros =  \frac{c}{a}

___________________________

༒ Solution ➽

Here,

α + β = 2

and

 \Large \bf \alpha  \beta  =  \frac{4}{3}

Now,

\sf  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  + 2( \frac{1}{ \alpha } +  \frac{1}{ \beta }  ) +3\alpha\beta\\  \\  \sf =  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  + 2( \frac{ \beta  +  \alpha }{ \alpha  \beta } )+3\alpha\beta\\  \\  =  \sf \frac{ { \alpha }^{2} +   \beta {}^{2}  + 2( \alpha  +  \beta ) }{ \alpha  \beta } +3\alpha\beta\\  \\   \sf =  \frac{ {( \alpha  +  \beta ) }^{2}  - 2 \alpha  \beta  + 2( \alpha  +  \beta )}{ \alpha  \beta }+3\alpha\beta \\     \{ \bf add \: and \: subtract \: 2 \alpha  \beta  \: in \: numerator \}

 \dfrac{ {2}^{2}   - 2( \dfrac{4}{3} ) + 2(2)}{ \dfrac{4}{3} } +3\times\frac{4}{3}\\  \\  \sf =  \dfrac{4 -  \dfrac{8}{3}  + 4}{ \dfrac{4}{3} }+4

 \sf =  \dfrac{ \dfrac{12 - 8 + 12}{ \cancel{3}} }{ \dfrac{4}{ \cancel{3}} }  +4\\  \\  \sf =  \frac{16}{4}  +4\\  \\ \Large \purple{  =  \bf8}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
260

Answer:

Given :-

  • If α and β are the zeros of the quadratic polynomial p(s) = 3s² - 6s + 4.

To Find :-

  • What is the value of α/β + β/α + 2(1/α + 1/β) + 3αβ.

Solution :-

Given Equation :

\bigstar\: \: \sf\bold{3s^2 - 6s + 4}\\

where,

  • a = 3
  • b = - 6
  • c = 4

First, we have to find the sum and product of roots :

{\small{\bold{\purple{\underline{\leadsto\: In\: case\: of\: sum\: of\: roots\: :-}}}}}\\

As we know that,

\clubsuit Sum of roots Formula :

\mapsto\: \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}\\

We have :

  • a = 3
  • b = - 6

According to the question by using the formula we get,

\implies \sf \alpha + \beta =\: \dfrac{- (- 6)}{3}

\implies \sf \alpha + \beta =\: \dfrac{\cancel{6}}{\cancel{3}}

\implies \sf\bold{\green{\alpha + \beta =\: 2}}\\

{\small{\bold{\purple{\underline{\leadsto\: In\: case\: of\: product\: of\: roots\: :-}}}}}\\

As we know that,

\clubsuit Product of roots Formula :

\mapsto \sf\boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}\\

We have :

  • a = 3
  • c = 4

According to the question by using the formula we get,

\implies \sf \bold{\green{\alpha\beta =\: \dfrac{4}{3}}}\\

Now, we have to find the value of :

\dashrightarrow \sf\bold{\dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} + 2\bigg(\dfrac{1}{\alpha} + \dfrac{1}{\beta}\bigg) + 3\alpha\beta}

We have :

\bullet\: \: \rm{\bold{\alpha + \beta =\: 2}}

\bullet\: \: \rm{\bold{\alpha\beta =\: \dfrac{4}{3}}}

According to the question,

\longrightarrow \sf \dfrac{\alpha^2 + \beta^2}{\alpha\beta} + 2\bigg(\dfrac{\beta + \alpha}{\alpha\beta}\bigg) + 3\alpha\beta

\longrightarrow \sf \dfrac{\alpha^2 + \beta^2 + 2(\alpha + \beta)}{\alpha\beta} + 3\alpha\beta

\longrightarrow \sf \dfrac{(\alpha + \beta)^2 - 2\alpha\beta + 2(\alpha + \beta)}{\alpha\beta} + 3\alpha\beta\: \: \bigg\lgroup \sf\bold{\pink{a^2 + b^2 =\: (a + b)^2 - 2ab}}\bigg\rgroup\\

\longrightarrow \sf \dfrac{(2)^2 - 2\bigg(\dfrac{4}{3}\bigg) + 2(2)}{\dfrac{4}{3}} + 3\bigg(\dfrac{4}{3}\bigg)\\

\longrightarrow \sf \dfrac{4 - \dfrac{8}{3} + 4}{\dfrac{4}{3}} + \dfrac{\cancel{12}}{\cancel{3}}

\longrightarrow \sf \dfrac{\dfrac{12 - 8 + 12}{3}}{\dfrac{4}{3}} + 4

\longrightarrow \sf \dfrac{\dfrac{16}{3}}{\dfrac{4}{3}} + 4

\longrightarrow \sf \dfrac{16}{3} \times \dfrac{3}{4} + 4

\longrightarrow \sf \dfrac{\cancel{48}}{\cancel{12}} + 4

\longrightarrow \sf 4 + 4

\longrightarrow \sf\bold{\red{8}}

\therefore \small{\bf{\underline{\underline{The\: value\: of\: \dfrac{\alpha}{\beta} + \dfrac{\beta}{\alpha} + 2\bigg(\dfrac{1}{\alpha} + \dfrac{1}{\beta}\bigg) + 3\alpha\beta\: is\: 8\: .}}}}\\

Similar questions