Math, asked by Bitwin, 10 months ago

If alpha and Nita are the zeroes of polynomial 2x^2+3x+5 then find the value of alpha+bita\alphabita

Answers

Answered by aakriti05
2

Step-by-step explanation:

heya !!

2X² - 3X - 5

Here,

A = 2 , B = -3 and C = -5

Sum of zeroes = -B/A

Alpha + Beta = 3/2

And,

Product of zeroes = C/A

Alpha × Beta = -5/2

Therefore,

Alpha + Beta / Alpha × Beta = 3/2 / -5/2

=> 3/2 × 2/ - 5

=> - 3/5.

if it helps then mrk me as brainliest

Answered by SarcasticL0ve
4

Given:-

  • p(x) = 2x² + 3x + 5

  •  \alpha and  \beta are the zeroes of polynomial.

To find:-

  • Value of \sf \dfrac{ \alpha + \beta }{ \alpha \beta}

Solution:-

GivEn Polynomial:- 2x² + 3x + 5

This is a form of ax² + bx + c

Therefore,

  • a = 2
  • b = 3
  • c = 5

We know that,

\normalsize{\underline{\underline{\sf{\purple{\dag\;Sum\;of\;zeroes:-}}}}}

:\implies\sf ( \alpha + \beta ) = \sf \dfrac{-b}{a}

\normalsize{\underline{\underline{\sf{\purple{\dag\;Product\;of\;zeroes:-}}}}}

:\implies\sf ( \alpha \beta ) = \sf \dfrac{c}{a}

\therefore\sf ( \alpha + \beta) = \dfrac{-3}{2}  ; \sf ( \alpha + \beta) = \dfrac{5}{2}

Therefore, the value of \sf \dfrac{ \alpha + \beta }{ \alpha \beta} is -

:\implies\sf \dfrac{ \frac{-3}{ \cancel{2}}}{ \frac{5}{ \cancel{2}}}

:\implies\sf \dfrac{-3}{5}

\normalsize{\underline{\underline{\sf{\red{\dag\;Hence\;Solved!!}}}}}

 \rule{200}{2}

Similar questions