Math, asked by Jleena1754, 7 months ago

If alpha band beta are zeros of polynomial 6x^2-7x-3,then from a quadratic polynomial where zeros are 2alpha and 2beta.

Answers

Answered by kshitijgumber3338
0

Step-by-step explanation:

alpha+beta = -b/a = 7/6

alpha × beta = c/a = -1/2

2(alpha + beta) = 7/3

4 alpha beta = -2

formula = x² - SUM x + PRODUCT

= x²-7/3 x -2 = 3x²-7x-6

Answered by MaIeficent
6

Step-by-step explanation:

Given,α and β are the zeroes of the polynomial 6x² - 7x - 3

For a quadratic polynomial ax² + bx + c

Sum of zeroes = \dfrac{-b}{a}

Product of zeroes = \dfrac{c}{a}

In the polynomial 6x² - 7x - 3

• a = 6 , b = -7 and c = -3

\sf \dashrightarrow \alpha + \beta = \dfrac{-b}{a} = \dfrac{-(-7)}{6} = \dfrac{7}{6}

\sf \dashrightarrow \alpha\beta = \dfrac{c}{a} = \dfrac{-3}{6} = \dfrac{-1}{2}

Now, let us find the polynomial of zeroes 2α and 2β

Sum of zeroes = 2α + 2β

\: \: \: \: \:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:= 2(α + β)

\: \: \: \: \:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\: = 2 ×  \dfrac{7}{6} = \dfrac{7}{3}

Product of zeroes= 2α × 2β

\: \: \: \: \:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\:\:= 4(αβ)

\: \: \: \: \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\: = 4 ×  \dfrac{-1}{2} = -2

As, the general form of the quadratic equation is

➝ x² - (sum of zeroes)x + product of zeroes = 0

\sf x^{2} - \dfrac{7x}{3} - 2 = 0

\sf \dfrac{3x^{2} - 7x - 6 }{3}= 0

\sf 3x^{2} - 7x - 6 = 0

Required quadratic polynomial = 3x² - 7x - 6

Similar questions