Math, asked by Arjun1357, 7 months ago

If alpha,beeta are the zeroes of the polynomial,f(x)= x^2-x-4, then the value of alpha+beeta-alpha*beeta=?​

Answers

Answered by prince5132
73

GIVEN :-

  • ɑ and β are the zeroes of the polynomial f(x)= x² - x - 4.

TO FIND :-

  • The value of (ɑ + β) - (ɑ × β).

SOLUTION :-

 :  \implies \displaystyle \sf  \:  \alpha  +  \beta  =  \frac{ -  \: co - efficient \: of \: x}{co - efficient \: of  \: x ^{2} }  \\  \\  \\

 :  \implies \displaystyle \sf  \:  \alpha  +  \beta  = \frac{ - b}{a}  \\  \\  \\

 :  \implies \displaystyle \sf  \:  \alpha  +  \beta  = \frac{ -(-1)}{1}  \\  \\   \\

 :  \implies \displaystyle \sf  \:  \boldsymbol{ \alpha  +  \beta } =  1 \\  \\

Now,

 \\  \\  :  \implies \displaystyle \sf  \:  \alpha \times   \beta  = \frac{constant \: term}{co - efficient \: of  \: x ^{2} } \\  \\  \\

  :  \implies \displaystyle \sf  \:  \alpha \times   \beta  =  \frac{c}{a}  \\  \\  \\

  :  \implies \displaystyle \sf  \:  \alpha \times   \beta  =  \frac{ - 4}{1}  \\  \\  \\

  :  \implies \displaystyle \sf  \:   \boldsymbol{\alpha \times   \beta}  =  - 4 \\  \\

Now according to question we have to find the value of (ɑ + β) - (ɑ × β) . So,

 \\  \\  :  \implies \displaystyle \sf  \:  ( \alpha  +  \beta ) - ( \alpha \times   \beta ) =   1 - ( - 4) \\  \\  \\

 :  \implies \displaystyle \sf  \:  ( \alpha  +  \beta ) - ( \alpha \times   \beta ) =   1 + 4 \\  \\  \\

 :  \implies \underline{ \boxed{ \displaystyle \sf  \:   \boldsymbol{( \alpha  +  \beta ) - ( \alpha \times   \beta ) = 5}}}

Answered by Anonymous
67

Given:,

 \sf\qquad\bullet \alpha  \: and \: \beta are \: zeroes \: of \: f(x) =  {x}^{2}  - x - 4

Find:

 \sf\qquad\bullet (\alpha) + (\beta) -  (\alpha) \times ( \beta )

Solution:

Compare f(x) = - x - 4 = 0

with ax² + bx + c = 0

So, here

  • a = 1
  • b = -1
  • c = -4

we, know that

 \boxed{ \sf  Sum \: of \: Zeroes =  \frac{ - b}{a} }

where,

  • a = 1
  • b = -1

So,

 \hookrightarrow\sf  Sum \: of \: Zeroes =  \frac{ - b}{a} \\  \\

 \hookrightarrow\sf ( \alpha ) + ( \beta ) =  \frac{ - ( - 1)}{1} \\  \\

 \hookrightarrow\sf ( \alpha ) + ( \beta ) =  \frac{1}{1} \\  \\

 \hookrightarrow\sf ( \alpha )  + ( \beta ) = 1\\  \\

 \rule{287.5}{1.6} \\  \rule{287.5}{1.6}

we, know that

 \boxed{ \sf  Product \: of \: Zeroes =  \frac{c}{a} }

where,

  • a = 1
  • c = -4

So,

 \hookrightarrow\sf Product \: of \: Zeroes =  \frac{c}{a} \\  \\

 \hookrightarrow\sf  ( \alpha ) \times ( \beta ) =  \frac{ - 4}{1} \\  \\

 \hookrightarrow\sf  (\alpha) \times  (\beta)  =   - 4\\  \\

So, we have to find

 \sf \dashrightarrow(\alpha) + (\beta) -  (\alpha) \times ( \beta ) \\  \\

where,

  • \alpha + \beta = 1
  • \sf\alpha \times \beta = -4

So,

 \sf \dashrightarrow(\alpha) + (\beta) -  (\alpha) \times ( \beta ) \\  \\

 \sf \dashrightarrow 1 -  (-4) \\  \\

 \sf \dashrightarrow  1 + 4 \\  \\

 \sf \dashrightarrow  5 \\  \\

 \rule{287.5}{1.6} \\  \rule{287.5}{1.6}

Hence,  \sf(\alpha) + (\beta) -  (\alpha) \times ( \beta ) = 5


Anonymous: Awesome :)
Similar questions