Math, asked by ojhaujjwal139, 3 months ago

if alpha=beta=15 , then the value of sin7alpha-cos7beta

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{\alpha=\beta=15^\circ}

\textbf{To find:}

\textsf{The value of}

\mathsf{sin\,7\alpha-cos\,7\beta}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{sin\,7\alpha-cos\,7\beta}

\mathsf{=sin\,7(15^\circ)-cos\,7(15^\circ)}

\mathsf{=sin\,105^\circ-cos\,105^\circ}

\mathsf{=sin(90^\circ+15^\circ)-cos\,105^\circ}

\mathsf{=cos\,15^\circ-cos\,105^\circ}

\mathsf{using\;the\;identity}

\boxed{\mathsf{cosC-cosD=\;-2\,sin\left(\dfrac{C+D}{2}\right)\,sin\left(\dfrac{C-D}{2}\right)}}

\mathsf{=\;-2\,sin\left(\dfrac{15^\circ+105^\circ}{2}\right)\,sin\left(\dfrac{15^\circ-105^\circ}{2}\right)}

\mathsf{=\;-2\,sin\left(\dfrac{120^\circ}{2}\right)\,sin\left(\dfrac{-90^\circ}{2}\right)}

\mathsf{=\;-2\,sin\,60^\circ\,sin(-45^\circ)}

\mathsf{=2\,sin\,60^\circ\,sin\,45^\circ}

\mathsf{=2{\times}\dfrac{\sqrt3}{2}{\times}\dfrac{1}{\sqrt2}}

\mathsf{=\dfrac{\sqrt3}{\sqrt2}}

\mathsf{=\sqrt{\dfrac{3}{2}}}

\implies\boxed{\mathsf{sin\,7\alpha-cos\,7\beta=\sqrt{\dfrac{3}{2}}}}

\textbf{Find more:}

Find the value of cos 22°30'

https://brainly.in/question/6037145

Evaluate :

(i) sin 3π/8

https://brainly.in/question/11216263

Similar questions