If alpha + beta = 90 degree show that the maximum value of cos alpha cos beta is 1/2
Answers
Answer:
hope it helps
PLEASE MARK AS BRAINLIEST
Step-by-step explanation:
Maximum and minimum value of sinα sinβ is 1/2 and -1/2 respectively.
Step-by-step explanation:
Given: \alpha+\beta=90^{\circ}=\frac{\pi}{2}α+β=90
∘
=
2
π
To find: Maximum and Minimum Value of sin\,\alpha\:\,sin\,\betasinαsinβ
Consider,
sin\,\alpha\:\,sin\,\betasinαsinβ
Using Complementary angle rule,
=sin\,\alpha\:\,cos\,\alpha=sinαcosα
=\frac{2}{2}\times sin\,\alpha\:\,cos\,\alpha=
2
2
×sinαcosα
=\frac{2sin\,\alpha\:\,cos\,\alpha}{2}=
2
2sinαcosα
Using Half Angle formula of trigonometry,
=\frac{sin\,2\alpha}{2}=
2
sin2α
Range of the sin function is [ -1 , 1 ]
⇒ Maximum Value = 1
⇒ Minimum Value = 1
So, Maximum Value of sinα sinβ = \frac{1}{2}
2
1
Minimum Value of sinα sinβ = \frac{-1}{2}
2
−1
Therefore, Maximum and minimum value of sinα sinβ is 1/2 and -1/2 respectively.