Math, asked by pabhishek6436, 10 months ago

If alpha + beta = 90 degree show that the maximum value of cos alpha cos beta is 1/2

Answers

Answered by VerifiedJaat
3

Answer:

hope it helps

PLEASE MARK AS BRAINLIEST

Step-by-step explanation:

Maximum and minimum value of sinα sinβ is 1/2 and -1/2 respectively.

Step-by-step explanation:

Given: \alpha+\beta=90^{\circ}=\frac{\pi}{2}α+β=90

=

2

π

To find: Maximum and Minimum Value of sin\,\alpha\:\,sin\,\betasinαsinβ

Consider,

sin\,\alpha\:\,sin\,\betasinαsinβ

Using Complementary angle rule,

=sin\,\alpha\:\,cos\,\alpha=sinαcosα

=\frac{2}{2}\times sin\,\alpha\:\,cos\,\alpha=

2

2

×sinαcosα

=\frac{2sin\,\alpha\:\,cos\,\alpha}{2}=

2

2sinαcosα

Using Half Angle formula of trigonometry,

=\frac{sin\,2\alpha}{2}=

2

sin2α

Range of the sin function is [ -1 , 1 ]

⇒ Maximum Value = 1

⇒ Minimum Value = 1

So, Maximum Value of sinα sinβ = \frac{1}{2}

2

1

Minimum Value of sinα sinβ = \frac{-1}{2}

2

−1

Therefore, Maximum and minimum value of sinα sinβ is 1/2 and -1/2 respectively.

Answered by sakshichourasia13
0

\huge \bigstar  \mathfrak {\color{royalblue}{Please  \: \:  mark \:  \: me  \:  \: as \:  \: }} \\   \huge  \mathfrak {\color{royalblue}{ the \:  \:  brainliest  \:  \: and  \:  \:}} \\  \huge \mathfrak {\color{royalblue}{follow}} \bigstar

Attachments:
Similar questions