Math, asked by pavanasrigayathri, 1 month ago

if alpha, beta and gama are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha.beta + beta.gama + gama.alpha

Answers

Answered by sutradharrupa466
0

Answer:

201kbhbjeehehu3h3heh

Answered by TrustedAnswerer19
72

 \green{ \boxed{ \bigstar \:  \:  \:  \:  \bf \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{7}{4}}}

Step-by-step explanation:

We know that,

If

\pink{\rm \bigstar\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma    +  \gamma  \alpha  = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Now given the polynomial :

 \bf \: 4 {x}^{3}  - 6 {x}^{2}  + 7x + 3 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \sf \:  \alpha , \:  \beta   \: and \:  \: \gamma  \: are \: the \: zeroes \: of \: that \: polynmial \\  \\ c\:=\:7\:\:\:\:\:\:and\:\:\:\:a\:=\:4\\\\ \bf  \green{ \bf \: \therefore \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{7}{4} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions