Math, asked by sachuskichus, 9 months ago

if alpha beta and gamma are the zeroes of the polynomial 2x³+x²+13x+6 then evaluate alpha×beta+beta×gamma+gamma×alpha​

Answers

Answered by Blaezii
10

The value of αβ + βγ + γα is :

\bf \dfrac{13}{2}\qquad=\qquad 6.5

Step-by-step explanation :

Given -

α, β and γ are the zeroes of the polynomial 2x³ + x² - 13x + 6

To Find -

The value of αβ + βγ + γα.

Solution :

We know that :

\bigstar\;\boxed{\bf \alpha\beta  + \beta \gamma  + \gamma \alpha  = \dfrac{c}{a}}

So,

\implies \sf p(x)=2x3+x2-13x+6\\ \\ \\\implies \sf \dfrac{13}{2}\qquad=\qquad \bf 6.5

Hence,

The value of αβ + βγ + γα is :

\bf \dfrac{13}{2}\qquad=\qquad 6.5

\rule{300}{1.5}

\bigstar\;\textbf{\underline{\underline{Extra\;Formuale :-}}}\\ \\ \\\boxed{\begin{minipage}{7cm}{\underline{\underline{{\textbf {For cubic polynomial :}}}}}\\ \\ $\sf 1)\; \alpha + \beta + \gamma = \dfrac{-b}{a} \\ \\ 2)\;\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a} \\ \\ 3)\;\alpha \beta \gamma = \dfrac{-d}{a}$\end{minipage}}

\boxed{\begin{minipage}{7cm}{\underline{\underline{{\textbf {For quadratic polynomial :}}}}}\\ \\ $\sf 1)\;\alpha + \beta = \dfrac{-b}{a} \\ \\ 2) \;\alpha \beta  = \dfrac{c}{a}$\end{minipage}}

Similar questions