Math, asked by hemamanojsheeba, 22 days ago

If alpha, beta and gamma are the zeroes of the polynomial 2x3 – 2x2 + 3x – 4, then evaluate alpha/beta gamma + beta / gamma alpha + gamma/alpha beta

Answers

Answered by prajithnagasai
123

Answer:

on simplifying, you get

(alpha² + beta² + gamma²) / alpha.beta.gamma

= (1)²- 2(3/2) / 4 = -1/2

Answered by SparklingBoy
157

Given :-

α , β and γ Are Zeros of the Cubic Polynomial :

 \bf 2 {x}^{3}  - 2 {x}^{2}  + 3x - 4

___________________________

To Find :-

We have to Find the value of :

   \large\frac{ \alpha }{ \beta  \gamma }  +   \frac{ \beta }{ \gamma  \alpha }  +  \frac{ \gamma }{ \alpha  \beta }

___________________________

Key Concept :-

Relationship b/w Zeros And Coefficients of a Cubic Polynomial

If α , β and γ are the Zeros of a Cubic Polynomial

of the Form:

 \bf a{x}^{3}  + b {x}^{2}  + cx + d

Then,

 \bf \alpha   + \beta   + \gamma  =   - \frac { b}{a}  \\  \\   \bf\alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =  \frac{c}{a}  \\  \\  \bf \alpha  \beta  \gamma  =   - \frac{d}{a}

___________________________

Solution :-

Here we have,

  \bf\alpha +   \beta  + \gamma  =  -  \frac{( - 2)}{2}  = 1

 \bf \alpha  \beta   + \beta  \gamma +   \gamma  \alpha  =  \dfrac{3}{2}  \\  \\  \bf  \alpha  \beta  \gamma  =  -  \frac{ ( - 4)}{2}  = 2

Now ,

 \frac{ \alpha }{ \beta  \gamma }  +  \frac{ \beta }{ \gamma  \alpha }  +  \frac{ \gamma }{ \alpha  \beta }  \\  \\   =  \frac{ { \alpha }^{2}  +  { \beta }^{2}  +  { \gamma }^{2} }{ \alpha  \beta  \gamma }  \\  \\  \bf \bigg \{ \frac{ \large Add \: and \: Subtract}{  \underline{2( \alpha  \beta   + \beta  \gamma  +  \gamma   \alpha ) \: in \: Numerator } }\bigg \}

 =  \frac{( { \alpha  +  \beta  +  \gamma )}^{2}  - 2( \alpha  \beta   + \beta  \gamma +   \gamma  \alpha) }{ \alpha  \beta  \gamma }   \\  \\  \bf \Large\{ Putting \:  \: values \}

 =   \dfrac{ {(1)}^{2} - 2( \dfrac{3}{2}  )}{2}  \\  \\  =  \frac{1 - 3}{2}  \\  \\  =  \frac{ - 2}{ \:  \:  \: 2}  \\  \\  =   \huge\purple{{  {\bf \:  - 1}}}

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions