Math, asked by SHREYANSHcx, 1 month ago

- If alpha, Beta and gamma are the zeroes of the polynomial f (x) = px^3+ 9x^2 + rx + s, then find the value of
Alpha^2 + beta^2 + gamma^2

Best answer will get brainliest
Spammer will get reported
Thanks!

Answers

Answered by nr455466
1

Step-by-step explanation:

 \alpha  \:  \beta \:   \gamma  \: are \: zero \: of \: f(x) = px {}^{3}  + 9 {x}^{2}  + rx + s

where a= p , b = q , c = r, d = s.

 \alpha  +  \beta  +  \gamma  =  \frac{ - b}{a}

 \alpha +   \beta  +  \gamma  =  \frac{ - q}{p}

________1

αβ+βγ+αγ= c/q

⇒αβ+βγ+αγ = r/p_________ (2)

⇒αβγ= - d/q

αβγ= -s/p________ (3)

 \alpha {}^{2}    + \beta +   {}^{2}  \gamma  {}^{2}  = ( \alpha +   \beta  +  \gamma   ) {}^{2}  - 2 \alpha  \beta  - 2 \beta  \gamma  - 2 \gamma  \alpha

 (\alpha  +  \beta +   \gamma ) {}^{2}  - 2( \alpha  \beta   + \beta  \gamma   -   \gamma  \alpha )

(q/p)^2 - 2 r/p. [ from 1 & 2 ]

q^2/p^3 - 2r/p

q^2 -2rp/p^2

.

Answered by Anonymous
4

Answer: q^2/p^2 - 2r/p or (q^2 - 2pr)/p^2.

Explanation:

Given, p(x) = px^3 + qx^2 + rx + s

We know,

α + β + γ = - b/a

αβ + βγ + αγ = c/a

Also,

(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ac)

=> (- b/a)^2 = (α^2 + β^2 + γ^2) + 2(c/a)

=> (α^2 + β^2 + γ^2) = (- q/p)^2 - 2(r/p) = q^2/p^2 - 2r/p.

Similar questions