If alpha,beta and gamma are the zeroes of x^3-12x^2+39x-28 them
find the value of alpha^3+beta^3+gamma^3
Answers
Answer :-
408
Solution :-
x³ - 12x² + 39x - 28
Comparing with ax³ + bx² + cx + d we get,
- a = 1
- b = - 12
- c = 39
- d = - 28
α, β and γ are the zeroes of the polynomial
- Sum of zeroes = α + β + γ = - b/a = - ( - 12 )/1 = 12
- Sum of product of zeroes taken two at a time = αβ + βγ + γα = c/a = 39/1 = 39
- Product of zeroes = αβγ = - d/a = - ( - 28 )/1 = 28
Finding α² + β² + γ²
Using identity α² + β² + γ² = (α + β + γ)² - 2(αβ + βγ + γα)
==> α² + β² + γ² = ( 12 )² - 2( 39 )
==> α² + β² + γ² = 144 - 78 = 66
Finding α³ + β³ + γ²
Using identity α³ + β³ + γ³ = (α + β + γ) { α² + β² + γ² - (αβ + βγ + γα) } + 3αβγ
==> α³ + β³ + γ³ = ( 12 ){ 66 - ( 39 ) } + 3( 28 )
==> α³ + β³ + γ³ = ( 12 )( 27 ) + 84
==> α³ + β³ + γ³ = 324 + 84
==> α³ + β³ + γ³ = 408
Therefore the value of α³ + β³ + γ³ is 408.
QUESTION :-
If alpha,beta and gamma are the zeroes of x³-12x²+39x-28 them
find the value of α³+β³+y³.
SOLUTION :-
➠ x³-12x²+39x-28
➠ Comparing we get,
➠ a = 1 , b = -12 , c = 39 , d = -28
➠ let ,the three zeroes be α , β & y.
➠ sum of zeroes = α+β+y
➠ ( -b/a)= -(-12/1) = 12.
➠ sum of product of zeroes = αβ +βy + αy
➠ (c/a) = ( 39/1) = 39.
➠ product of zeroes = α*β*y
➠ -( -d/a) = -(-28/1) = 28.
We know that,
➠ α²+β²+y² = (α+β+y) ²-2(αβ + βy+αy)
Now,
➠ α²+β²+y² = (12)²-2(39)
➠α²+β²+y² = 144 - 78
➠α²+β²+y² =66.
We know that,
➠ α³+β³+y³ = (α+β+y) (α²+β²+y²)-(αβ + βy+αy)+3αβy
Now,
➠α³+β³+y³ = (12) [(66--(39)] +3(28)
➠α³+β³+y³ = (12)(27) +84
➠α³+β³+y³ = 324 + 84
➠α³+β³+y³ = 408
HENCE, THE VALUE OF α³+β³+y³ IS 408.