Math, asked by sushilaneja6912, 1 year ago

If alpha beta and gamma are the zeros of 6 x cube + 3 x square - 5 x + 1 then find the value of one by alpha plus one by beta + 1 by gamma

Answers

Answered by SerenaBochenek
9

Answer:

\text{The value of }\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\text{ is 5}

Step-by-step explanation:

Given that if \alpha,\beta\text{ and }\gamma are the zeros of

6x^3 + 3x^2 - 5x + 1

\text{we have to find the value of }\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}

6x^3 + 3x^2 - 5x + 1

\text{sum of product of zeroes=}\alpha\beta+\beta\gamma+\gamma\alpha=\frac{c}{a}=\frac{-5}{6}

\text{Product of zeroes=}\alpha\beta\gamma=\frac{-d}{a}=\frac{-1}{6}

Now,

\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}

\frac{\beta\gamma+\gamma\alpha+\alpha\beta}{\alpha\beta\gamma}

\frac{\frac{-5}{6}}{\frac{-1}{6}}=5

\text{The value of }\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\text{ is 5}

Answered by mysticd
3

Answer:

\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=5

Step-by-step explanation:

Given \: \alpha , \beta \: and \: \gamma \\are \: zeroes\: of \: 6x^{3}+3x^{2}-5x+1

Compare the polyomial with ax³+bx²+cx+d , we get

a = 6, b = 3, c = -5, d = 1

 \alpha\beta+\beta\gamma+\gamma\alpha\\=\frac{c}{a}\\=\frac{-5}{6}

\alpha\beta\gamma\\ = \frac{-d}{a}\\=\frac{-1}{6}

Now,\\\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\\=\frac{\alpha\beta+\beta\gamma+\gamma\alpha}{\alpha\beta\gamma}\\=\frac{\frac{-5}{6}}{\frac{-1}{6}}\\=5

Therefore,

\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=5

•••♪

Similar questions