Math, asked by deepakjoshi80, 1 year ago

If alpha beta and gamma are the zeros of the cubic polynomial Px=x³+x²-17x+15 then alpha beta +beta gamma +gama alpha =

Answers

Answered by aman190k
4
&lt;b&gt;●••••••••☆Hello User☆•••••••●<br />《《Here is your answer》》<br />______________________________&lt;br&gt;&lt;br&gt;&lt;/b&gt;
<br />Relation \:  between  \: the  \: zeros  \: of \:  cubic  \: polynomial : \\  \\ <br /><br />Sum \:  of  \: zeros : \\ <br />(  \alpha  +  \beta  +  \gamma ) = \frac{ - b}{a}  =  \frac{ - coefficient \: of \:  {x}^{2} }{coefficient \: of \:  {x}^{3}}  \\  \\ Sum \:  of  \: the \: product \: of \: zeros : \\ ( \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha ) =  \frac{c}{a}  = \frac{ coefficient \: of \:  {x}}{coefficient \: of \:  {x}^{3}} \\  \\ Product \: of \: zeros:  \\ ( \alpha  \beta  \gamma ) =  \frac{ - d}{a}  =  \frac{constant}{coefficient \: of \:  {x}^{3}}  \\  \\  \\ now \:  \\ P(x) = {x}^{3}  +  {x}^{2}  - 17x + 15 \\  \\  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  =   \frac{ - 1}{1}  =  - 1

______________________________
&lt;b&gt;●••••••☆Brainly Star☆•••••••●&lt;/b&gt;
Similar questions