Math, asked by anagha20, 1 year ago

if alpha beta and gamma are the zeros of the polynomial 6 x cube minus 3 x square - 5 x + 1 then find the value of Alpha raised to minus 1 + beta raised to -1 and gamma raised to -1​

Answers

Answered by LovelyG
103

Answer:

\large{\underline{\boxed{\sf 5}}}

Step-by-step explanation:

Given polynomial:

6x³ - 3x² - 5x + 1

Here,

  • a = 6
  • b = (-3)
  • c = (-5)
  • d = 1

Sum of zeroes = -b/a

⇒ α + β + γ = -(-3)/6

⇒ α + β + γ = 1/2

Sum of product of zeroes = c/a

⇒ αβ + βγ + γα = -5/6

Product of zeroes = -d/a

⇒ αβγ = -1/6

Now, we have to find ;

α⁻¹ + β⁻¹ + γ⁻¹

\implies \sf  \frac{1}{ \alpha } +  \frac{1}{ \beta }   +  \frac{1}{ \gamma }  \\  \\ \implies \sf  \frac{ \beta  \gamma +   \alpha  \gamma   + \alpha  \beta }{ \alpha  \beta  \gamma }  \\  \\ \implies \sf  \frac{ -  \frac{5}{6} }{ -  \frac{1}{6} }  \\  \\ \implies \sf  \frac{5}{6}  \times 6 \\  \\ \implies \sf 5

Hence, the answer is 5.

_______________________

\large{\underline{\underline{\mathfrak{\heartsuit \: Extra \: Information: \: \heartsuit}}}}

For a cubic polynomial ax³ + bx² + cx + d, the zeroes α, β and γ, where:

  • α + β + γ = - b/a
  • αβ + βγ + γα = -c/a
  • αβγ = d/a

Similar questions