Math, asked by dhruvsatyawali960, 2 months ago

if alpha beta and gamma are the zeros of the polynomial f(x)=x³-3px²+qx-r such that 2 beta=alpha+gamma then show that 2p³=pq-r​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: \alpha, \:  \beta , \:  \gamma  \: are \: zeroes \: of \:  {x}^{3} -  {3px}^{2} + qx - r

and

\rm :\longmapsto\: 2\beta  =  \gamma +   \alpha

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\rm :\longmapsto\: \alpha  + \beta  +  \gamma  =  - \dfrac{( - 3p)}{1}

\rm :\longmapsto\:2 \beta  +  \beta  = 3p

\rm :\longmapsto\:3\beta  = 3p

\rm :\longmapsto\: \beta  = p

Since,

\rm :\longmapsto\: \:  \beta\: is\: zero\: of \:  {x}^{3} -  {3px}^{2} + qx - r

\rm :\longmapsto\: \:  p\: is\: zero\: of \:  {x}^{3} -  {3px}^{2} + qx - r

\rm :\longmapsto\: \:  {p}^{3} -  {3p(p)}^{2} + qp - r = 0

\rm :\longmapsto\: \:  {p}^{3} -  {3p}^{3} + qp - r = 0

\rm :\longmapsto\: \:-  {2p}^{3} + qp - r = 0

\rm :\longmapsto\: \:{2p}^{3}  = qp - r

Hence, Proved

Additional Information :-

\rm :\longmapsto\: \alpha, \:  \beta , \:  \gamma  \: are \: zeroes \: of \:  {ax}^{3} + {bx}^{2} + cx + d \: then

 \boxed{ \sf \:  \alpha  +  \beta  +  \gamma =  -  \: \dfrac{b}{a}}

 \boxed{ \sf \:  \alpha \beta   +  \beta \gamma   +  \gamma \alpha  =  \: \dfrac{c}{a}}

 \boxed{ \sf \:  \alpha\beta \gamma =  -  \: \dfrac{d}{a}}

Similar questions