Math, asked by teju2145, 11 months ago

if alpha beta are acute and roots of 2 tan squared theta + 35 tan theta + 2 is equals to zero then show that alpha + beta is equal to π/2​

Answers

Answered by JinKazama1
33

Answer:

Step-by-step explanation:

1) We have,

\alpha and \beta are roots of equation 2tan^2(\theta)+tan(\theta)+2=0

tan(\alpha) and tan(\beta) are roots of 2x^2+35x+2=0.

2) We know,

Sum of roots=-35/2

=>tan(\alpha)+tan(\beta)=\frac{-35}{2}

Product of roots =2/2=1

tan(\alpha)*tan(\beta)=1

3) That is,

tan(\alpha+\beta)=\frac{tan(\alpha)+tan(\beta)}{1-tan(\alpha)*tan(\beta)}\\ \\=\frac{\frac{-35}{2}}{1-1}=-\infty\\ \\ =>\alpha+\beta=\frac{\pi }{2}

Hence, Required value is  \pi/2.

Answered by vinayks12121976
1

2 { \tan }^{2} theta + 35  \tan \: theta \:  + 2 = 0 \\  \tan( \alpha )  +  \tan( \beta )  =  \frac{ - 35}{2}  \\  \tan( \alpha )  \tan( \beta )  =  \frac{2}{2}  = 1 \\  \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha )  \tan( \beta ) }  \\  =  \frac{  \frac{ - 35}{2} }{1 - 1}  =  \frac{  \frac{ - 35}{2} }{0}  =   -  \infty  \\  \tan( \alpha  +  \beta )  =  -  \infty  \\(  \alpha  +  \beta)  =  \frac{\pi}{2}

Similar questions