if alpha,beta are roots of 2x²-3x-6=0 then equation whose roots are aplha²+2,beta²+2 is ??
Anonymous:
hy
Answers
Answered by
20
☺
____________________________
Given,
α and ß are the roots of 2x² - 3x - 6 = 0.
We have,
Coefficient of x² ( a ) = 2
Coefficient of x ( b ) = -3.
Constant term ( c ) = -6.
We know the relationship between zeroes and coefficient of a quadratic polynomial.
⇒ Sum of zeroes = -b / a
⇒ α + ß = - ( -3 ) / 2
⇒ α + ß = 3 / 2 ------- ( 1 )
Product of zeroes = c /a
⇒ αß = -6 / 2
∴ αß = -3.
Now ,
⇒ α² + ß² = ( α + ß )² - 2αß
⇒ α² + ß² = ( 3/2 )² - 2 × ( - 3 )
⇒ α² + ß² = ( 9/4 ) + 6
⇒ α² + ß² = ( 9 + 24 ) / 4
⇒ α² + ß² = 33/4.
The general form of a quadratic equation is :
⇒ x² - ( sum of zeroes ) x + Product of zeroes = 0
⇒ x² - ( α² + 2 + ß² + 2 )x + ( α² + 2 ) ( ß² + 2 ) = 0
⇒ x² - ( α² + ß² + 4 ) x+ ( α²ß² + 2α² + 2ß² + 4 ) = 0
⇒ x² - { ( 33/4 ) + 4 }x + ( αß )² + 2 ( α² + ß² ) + 4 = 0
⇒ x² - { ( 33 + 16 ) / 4 }x + ( -3 )² + 2 ( 33/4 ) + 4 = 0
⇒ x² - (49/4) x + 9 + ( 33 / 2 ) + 4 = 0
4x² - 49x + 36 + 66 + 16
⇒ ----------------------------------- = 0
4
4x² - 49x + 118
⇒ --------------------------------- = 0
4
⇒ 4x² - 49x + 118 = 0
The required quadratic equation is ( 4x² - 49x + 118 = 0 ).
Hope it helps !
____________________________
Given,
α and ß are the roots of 2x² - 3x - 6 = 0.
We have,
Coefficient of x² ( a ) = 2
Coefficient of x ( b ) = -3.
Constant term ( c ) = -6.
We know the relationship between zeroes and coefficient of a quadratic polynomial.
⇒ Sum of zeroes = -b / a
⇒ α + ß = - ( -3 ) / 2
⇒ α + ß = 3 / 2 ------- ( 1 )
Product of zeroes = c /a
⇒ αß = -6 / 2
∴ αß = -3.
Now ,
⇒ α² + ß² = ( α + ß )² - 2αß
⇒ α² + ß² = ( 3/2 )² - 2 × ( - 3 )
⇒ α² + ß² = ( 9/4 ) + 6
⇒ α² + ß² = ( 9 + 24 ) / 4
⇒ α² + ß² = 33/4.
The general form of a quadratic equation is :
⇒ x² - ( sum of zeroes ) x + Product of zeroes = 0
⇒ x² - ( α² + 2 + ß² + 2 )x + ( α² + 2 ) ( ß² + 2 ) = 0
⇒ x² - ( α² + ß² + 4 ) x+ ( α²ß² + 2α² + 2ß² + 4 ) = 0
⇒ x² - { ( 33/4 ) + 4 }x + ( αß )² + 2 ( α² + ß² ) + 4 = 0
⇒ x² - { ( 33 + 16 ) / 4 }x + ( -3 )² + 2 ( 33/4 ) + 4 = 0
⇒ x² - (49/4) x + 9 + ( 33 / 2 ) + 4 = 0
4x² - 49x + 36 + 66 + 16
⇒ ----------------------------------- = 0
4
4x² - 49x + 118
⇒ --------------------------------- = 0
4
⇒ 4x² - 49x + 118 = 0
The required quadratic equation is ( 4x² - 49x + 118 = 0 ).
Hope it helps !
Answered by
0
Answer:
alpha^2 + 2 X beta^ 2 + 2 = 85/2
Step-by-step explanation:
alpha = - b/a ; beta = c/a
The given equation is 2x^2 - 3x - 6 = 0
a = 2, b = -3, c = -6
alpha = - (-3) / 2 = 3/2; beta = -6 / 2 = -3
alpha ^2 + 2 X beta^ 2 + 2 = ?
= (3/2)^2 + 2 X (-3)^2 + 2
= 9/4 + 18 + 2
= 9/4 + 20
= 170/4 = 85/2
Similar questions