Math, asked by ushakandulna321, 7 months ago

if alpha beta are roots of the equation X square + 5 x + 5 = 0 then equation whose roots are alpha plus one and pita plus one is​

Answers

Answered by SɴᴏᴡʏSᴇᴄʀᴇᴛ
36

\huge\bold{\underline{\underline{\star{\red{ANSWER}{\star}}}}}

\underline{\mathrm{The\: quadratic\: equation\: whose\: roots\: are\: (\alpha\:  +\: 1)\:(\beta \: +\: 1)\: is\: x^2\:+\: 3x\: +\: 1\: = \:0}}

\mathrm{Given\: equation\: is}

  • x^2\:+\:5x\:+\:5\:=\:0\:\:\:\:\:(1)    

\mathrm{Comparing\: with\:ax^2\:+\:bx\:+\:c ,\: we\: get}

  • \mathrm{a\: =\: 1,\: b\: =\: 5,\: c\: =\: 5}

\mathrm{Roots\: of\: (1)\: are\:\alpha ,\: \beta}

  • \mathrm{Sum\:of\:roots\:=\:\alpha \:+\:\beta \:=\:\frac{-b}{a}\:=\:\frac{-5}{1}\:=\:-5\:\:\:\:\:\:\:\:(2)}  
  • \mathrm{Product\: of\: roots\: =\: \alpha\beta\: =\:\frac{c}{a}\:=\:\frac{5}{1}\:  =\:5\:\:\:\:\:\:\:(3)}

\mathrm{Quadratic\: equation\: with\: roots\:( \alpha \: +\: 1)\:(\beta \: +\: 1 )\:is\: given\: by}

\sf{x^2\: +\:(sum\: of\: roots)x\: +\: (product\: of\: roots)\: =\: 0}

\sf{x^2\:+\:(\alpha\:+\:1\: +\:\beta\:+\: 1)x\: +\: (\alpha +1)(\beta +1)\: =\: 0}

\sf{x^2\:+\:(\alpha \: +\: \beta \: +\: 2)x\: +\: \alpha\beta  \: +\: \alpha \: +\:\beta \: +\: 1\: =\: 0}

\sf{x^2\:+\:(-5\:+\:2)x\: +\: 5\: +\: (-5)\: +\: 1\: =\: 0}      

\mathrm{[from\: (2)\: and\: (3)]}

\sf{x^2\:+\:(-3)x\: +\: 5\: -\: 5\: +\: 1\: =\: 0}

\sf{x^2\:+\: 3x\: +\: 1\: =\: 0}

<marquee direction=right>

  ❤ᴍᴀɢɪᴄᴀʟᴘɪᴇ❤

Answered by abhi517175
1

Answer:

...................................

Similar questions