Math, asked by rhimesh257, 8 hours ago

if alpha,beta are the equations of axsquare+bx+c=0,then the whole root of(-b/a)whole square - 4c/a​

Answers

Answered by dcmallik1396
0

Step-by-step explanation:

a {x}^{2}  + bx + c = 0

Dividing a on both sides

 \frac{a {x}^{2} }{a}  +  \frac{b}{a} x +  \frac{c}{a}  = 0

 {x}^{2}  +  \frac{b}{a} x +  \frac{c}{a}  = 0

 {x}^{2}  +  \frac{b}{a} x =  -  \frac{c}{a}

Making Formula Like

(g+h)²=g²+2gh+h²

 {(x)}^{2}  + 2.x. \frac{b}{2a}  +  {( \frac{b}{2a} )}^{2}  =  { (\frac{b}{2a}) }^{2}  -  \frac{c}{a}

Finally Formula has been made

 {(x +  \frac{b}{2a} )}^{2}  =  \frac{ {b}^{2} }{ 4{a}^{2} }  -  \frac{c}{a}  =  \frac{ {b}^{2} - 4ac }{4 {a}^{2} }

x +  \frac{b}{2a}  =  + or -  \frac{ \sqrt{ {b}^{2} - 4ac } }{2a}

x =  -  \frac{b}{2a} ( + or - ) \frac{ \sqrt{ {b}^{2}  - 4ac} }{2a}

x =  \frac{ - b (+  or- ) \sqrt{ {b}^{2} - 4ac } }{2a}

The Equation has two root=

 \alpha  \: and \:  \beta  \: according \: to \: ( +  \: or - )

 \alpha  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}

 \beta  =   \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}

Please Mark Me as Brainlist

Similar questions