Math, asked by sanjaykale, 1 year ago

if alpha +beta are the roots of equation 4x²-5x+2=0 find the equation whose roots are1)alpha+3beta&3alpha+beta 2)alpha/betaβ/alpha 3)alpha²/betaβ²/alpha 4)alpha+1/alphaβ+1/beta

Answers

Answered by amitnrw
13

Answer:

16x² - 80x + 107 = 0

8x² - 9x + 8 = 0

4x² -5x + 4 = 0

4x² -15x + 23 = 0

Step-by-step explanation:

4x²-5x+2=0

α + β = 5/4

αβ = 2/4 = 1/2

Case 1 -

Roots  α + 3β   , 3α + β

(x -(α + 3β) ( x - (3α + β) = 0

=> x² - x (4α + 4β) + ( 3α² + 3β² + 10αβ) = 0

=> x² -4x(α+β) + 3(α+β)² + 4αβ = 0

=> x² -4x(5/4) + 3×(5/4)² + 4×(1/2) = 0

=> x² - 5x + 75/16 + 2 = 0

=> 16x² - 80x + 75 + 32 = 0

=> 16x² - 80x + 107 = 0

Case 2 -

Roots  α/β   ,  β/α

(x - α/β)(x -β/α) = 0

=> x² -x(α/β + β/α)  + 1 = 0

=> x² - x(α² + β²)/αβ + 1 = 0

=> x² - x( (α + β)²-2αβ)/αβ + 1 = 0

=> x² - x( (5/4)² -2×(1/2))/(1/2) + 1 = 0

=> x² - 2x(25/16 -1) + 1 = 0

=> x² -2x(9/16) + 1 = 0

=> x² - 9x/8 + 1 = 0

=> 8x² - 9x + 8 = 0

Case 3

roots are   α²/β   , β²/α

(x-α²/β)(x - β²/α) = 0

=> x² -x(α²/β + β²/α) + αβ = 0

=> x² -x(α³ + β³)/αβ + αβ = 0

=> x² - x((α+β)³ -3αβ(α+β))/αβ + αβ = 0

=> x² - x((5/4)³ -3×(1/2)×(5/4))/(1/2)  + 1/2 = 0

=> x² -2x ( 125/64 - 15/8) + 1/2 = 0

=> x² -2x (125 - 120)/8  + 1/2 = 0

=> x² - 5x/4 + 1/2 = 0

=> 4x² -5x + 4 = 0

Case 4

Roots  are  α + 1/α  & β + 1/β

(x - (α + 1/α)( x -(β + 1/β) = 0

=> x² - x(α + β + 1/α + 1/β) + αβ + 1/αβ  + α/β + β/α = 0

=>x² - x (5/4 + (β+α)/αβ) + 5/4 + 1/(1/2) + (β+α)/αβ = 0

=> x²- x(5/4 + (5/4)/(1/2) ) + 5/4 + 2 + (5/4)/(1/2) = 0

=> x² - x ( 5/4 + 5/2) + 13/4 + 5/2 = 0

=> x² - 15x/4 + 23/4 = 0

=> 4x² -15x + 23 = 0

Similar questions