Math, asked by yashmali132003, 3 days ago

If alpha ,beta are the roots of equation x^2-2√3x +4 , prove that alpha cud + deta cub =0

Answers

Answered by starr1463
1

Answer:

This is the solution to this question

Attachments:
Answered by eeepathshala
1

given \: equation \\  on \: comparing \:  \:  \:  \:  \: {x}^{2}  - 2 \sqrt{3} x + 4   \\  \:  \:  \:  \:  \:  \:  \:  \:  with  \:  \:  \:  \:  \: \: a {x}^{2}  \:  + b x + c\\a = 1  \:  \:  \: b =  - 2 \sqrt{3}  \:  \:  \:  \:  \: c \:  =  \: 4 \\   \because \: roots \: are \:  \alpha  \: and \:  \beta  \\ ( \alpha  +  \beta ) =  \frac{ - b}{a}  \\ ( \alpha   + \beta ) =  \frac{ - ( - 2 \sqrt{3} )}{1}  \\ ( \alpha  +  \beta ) = 2 \sqrt{3}  \\  and \:  \alpha  \beta  =  \frac{c}{a}  \\  \alpha  \beta  =  \frac{4}{1}  \\  \alpha  \beta  = 4 \\ now \\ ( \alpha  +  \beta ) = 2 \sqrt{3} \\ on \: cubing \: both \: sides \\  {( \alpha  +  \beta )}^{3}  =  {(2 \sqrt{3}) }^{3}  \\  { \alpha }^{3}  +  { \beta }^{3}  + 3 \alpha  \beta ( \alpha  +  \beta ) = 8 \times 3 \sqrt{3}  \\ put \: values \: \\  { \alpha }^{3}  +  { \beta }^{3}  + 3 \times 4 \times 2 \sqrt{3}  = 24 \sqrt{3}  \\ { \alpha }^{3}  +  { \beta }^{3} + 24 \sqrt{3}  = 24 \sqrt{3}  \\ { \alpha }^{3}  +  { \beta }^{3} = 24 \sqrt{3 }  - 24 \sqrt{3}  \\ { \alpha }^{3}  +  { \beta }^{3} = 0 \\ hence \: proved

hope it helps you

please mark as Brainliest

Similar questions