Math, asked by dommetsr, 11 months ago

if alpha beta are the roots of equation X square + 2 x minus 1 is equals to zero then the equation whose roots are Alpha square and beta square is ​

Answers

Answered by MaheswariS
14

\textbf{Given:}

\text{$\alpha$ and $\beta$ are roots of $x^2+2x-1=0$}

\textbf{To find:}

\text{The quadratic equation having roots $\alpha^2$ and $\beta^2$}

\text{Sum of the roots=$\frac{-b}{a}$}

\implies\,\alpha+\beta=\frac{-2}{1}

\implies\,\bf\alpha+\beta=-2

\text{Product of the roots=$\frac{c}{a}$}

\implies\,\alpha\beta=\frac{-1}{1}

\implies\,\bf\alpha\beta=-1

\text{Now}

\alpha^2+\beta^2=(\alpha+\beta)^2-2\,\alpha\beta

\alpha^2+\beta^2=(-2)^2-2(-1)

\alpha^2+\beta^2=4+2

\implies\bf\alpha^2+\beta^2=6

\alpha^2\beta^2=(\alpha\beta)^2

\alpha^2\beta^2=(-1)^2

\implies\bf\alpha^2\beta^2=1

\text{The required quadratic equation is}

x^2-(\alpha^2+\beta^2)x+\alpha^2\beta^2=0

\implies\bf\,x^2-6x+1=0

Find more:

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

Answered by patojuanand
0

Answer:

hsjsknssjkddnjdszmgjektudhtd!udtmutd!utdh!gd thd!htdfhx!hfxh

ykyf

Step-by-step explanation:

ggujcndksmshidjdd

Similar questions