if alpha ,beta are the roots of quadratic equation 2x square minus 3x plus 4 equals to 0 then find. 1. 1 divided by alpha square plus 1 divided by beta square
Answers
- we need to find the value of 1/α² + 1/β²
❥ α and β are the roots of the given equation 2x² - 3x + 4 .
● a = 2
● b = -3
● c = 4
☘️ we know that :-
→ α + β = -b/a
→ α + β = -(-3)/2
→ α + β = 3/2 .....1)
→ αβ = c/a
→ αβ = 4/2
→ αβ = 2 .......2)
▶Now , finding Value of 1/α² + 1/β² :--
→ 1/α² + 1/β²
→ (β² + α²)/(αβ)² ......3)
- we know that,
→ a² + b² = (a + b)² - 2ab .....4)
● Now , from 1) , 2) , 3) and 4)
→ 1/α² + 1/β² = [( α + β)² - 2αβ]/(αβ)²
→ 1/α² + 1/β² = [(3/2)² - 2 × 2]/2²
→ 1/α² + 1/β² = [ 9/4 - 4 ]/4
→ 1/α² + 1/β² = [ (9 - 16)/4]/4
→ 1/α² + 1/β² = -7/4/4
→ 1/α² + 1/β² = -7/4 × 1/4
→ 1/α² + 1/β² = -7/16
Hence,
༒ Value of 1/α² + 1/β² is -7/16
━━━━━━━━━━━━━━━━━━━━━━━━━
we need to find the value of 1/α² + 1/β²
❥ α and β are the roots of the given equation 2x² - 3x + 4 .
● a = 2
● b = -3
● c = 4
☘️ we know that :-
→ α + β = -b/a
→ α + β = -(-3)/2
→ α + β = 3/2 .....1)
→ αβ = c/a
→ αβ = 4/2
→ αβ = 2 .......2)
▶Now , finding Value of 1/α² + 1/β² :--
→ 1/α² + 1/β²
→ (β² + α²)/(αβ)² ......3)
we know that,
→ a² + b² = (a + b)² - 2ab .....4)
● Now , from 1) , 2) , 3) and 4)
→ 1/α² + 1/β² = [(a + b)² - 2ab]/(αβ)²
→ 1/α² + 1/β² = [(3/2)² - 2 × 2]/2²
→ 1/α² + 1/β² = [ 9/4 - 4 ]/4
→ 1/α² + 1/β² = [ (9 - 16)/4]/4
→ 1/α² + 1/β² = -7/4/4
→ 1/α² + 1/β² = -7/4 × 1/4
→ 1/α² + 1/β² = -7/16
Hence,
༒ Value of 1/α² + 1/β² is -7/16