Math, asked by jeswika, 9 months ago

if alpha ,beta are the roots of quadratic equation 2x square minus 3x plus 4 equals to 0 then find. 1. 1 divided by alpha square plus 1 divided by beta square​

Answers

Answered by Anonymous
31

 \large\bf\underline {To \: find:-}

  • we need to find the value of 1/α² + 1/β²

 \huge\bf\underline{Solution:-}

 \bf\underline{\red{Given:-}}

❥ α and β are the roots of the given equation 2x² - 3x + 4 .

● a = 2

● b = -3

● c = 4

☘️ we know that :-

→ α + β = -b/a

→ α + β = -(-3)/2

→ α + β = 3/2 .....1)

→ αβ = c/a

→ αβ = 4/2

→ αβ = 2 .......2)

▶Now , finding Value of 1/α² + 1/β² :--

→ 1/α² + 1/β²

→ (β² + α²)/(αβ)² ......3)

  • we know that,

→ a² + b² = (a + b)² - 2ab .....4)

● Now , from 1) , 2) , 3) and 4)

→ 1/α² + 1/β² = [( α + β)² - 2αβ]/(αβ)²

→ 1/α² + 1/β² = [(3/2)² - 2 × 2]/2²

→ 1/α² + 1/β² = [ 9/4 - 4 ]/4

→ 1/α² + 1/β² = [ (9 - 16)/4]/4

→ 1/α² + 1/β² = -7/4/4

→ 1/α² + 1/β² = -7/4 × 1/4

→ 1/α² + 1/β² = -7/16

Hence,

༒ Value of 1/α² + 1/β² is -7/16

━━━━━━━━━━━━━━━━━━━━━━━━━


BrainIyMSDhoni: Great :)
Answered by k047
10

we need to find the value of 1/α² + 1/β²

 \huge\pink{solution}

❥ α and β are the roots of the given equation 2x² - 3x + 4 .

● a = 2

● b = -3

● c = 4

☘️ we know that :-

→ α + β = -b/a

→ α + β = -(-3)/2

→ α + β = 3/2 .....1)

→ αβ = c/a

→ αβ = 4/2

→ αβ = 2 .......2)

▶Now , finding Value of 1/α² + 1/β² :--

→ 1/α² + 1/β²

→ (β² + α²)/(αβ)² ......3)

we know that,

→ a² + b² = (a + b)² - 2ab .....4)

● Now , from 1) , 2) , 3) and 4)

→ 1/α² + 1/β² = [(a + b)² - 2ab]/(αβ)²

→ 1/α² + 1/β² = [(3/2)² - 2 × 2]/2²

→ 1/α² + 1/β² = [ 9/4 - 4 ]/4

→ 1/α² + 1/β² = [ (9 - 16)/4]/4

→ 1/α² + 1/β² = -7/4/4

→ 1/α² + 1/β² = -7/4 × 1/4

→ 1/α² + 1/β² = -7/16

Hence,

༒ Value of 1/α² + 1/β² is -7/16

  \huge\red{. ..follow \: me...}

 \huge \pink{mark \: brainleast}


BrainIyMSDhoni: Great :)
Similar questions