If alpha, beta are the roots of the equation 2x square -10x + 5 = 0, then find the value of
Answers
2x² - 10x + 5 = 0
a = 2
b = - 10
c = 5
So, Here
D = b² - 4ac
D = (-10)² - 4(2)(5)
D = 100 - 40
D = 60
________________________
Now,
α =
α =
α =
α =
α =
---------------------
Now,
ß =
ß =
ß =
ß =
ß =
_________________________
According to the Question,
We have to Find the value of
I hope it helps you ...
Answer:
Step-by-step explanation:
Let p( x ) = 2x² - 10x + 5 = 0
α and β are the roots of p ( x ),
Cmparing p ( x ) with ax²+ bx + c = 0,
We have a = 2 , b = - 10 and c = 5.
∴ x = - b ±√ b² - 4ac /2a
= - ( - 10 ) ± √( - 10 )² - 4 ( 2 ) ( 5 ) / 2 ( 2 )
= 10 ± √ 100 - 40 / 4
= 10 ± √60 / 4
= 10 ± √ 4 × 15 / 4
= 10 ± 2√15 / 4
= 2 ( 5 ± √15 ) / 4
= 5 ± √15 / 2
∴ α = 5 + √15 / 2 and β = 5 - √15 / 2.
∴ α / β + β / α = ( 5 + √15 / 2 ) / ( 5 - √15 / 2 ) + ( 5 - √15 / 2 ) / ( 5 + √15 / 2 )
= ( 5 + √15 ) / ( 5 - √15 ) + ( 5 - √15 ) / ( 5 + √15 )
= ( 5 + √15 )² + ( 5 - √15 )² / ( 5 - √15 ) ( 5 + √15 )
= ( 25 + 15 + 10√15 + 25 + 15 - 10√15 ) / ( 25 - 15 )
= ( 80 ) / 10
= 8 is the answer.