Math, asked by ashwinalex57, 1 day ago

If alpha, beta are the roots of the equation 2x square -10x + 5 = 0, then find the value of
 \frac{ \alpha }{ \beta }  +  \frac{  \beta }{ \alpha }

Answers

Answered by kinzal
0

2x² - 10x + 5 = 0

a = 2

b = - 10

c = 5

So, Here

D = b² - 4ac

D = (-10)² - 4(2)(5)

D = 100 - 40

D = 60

 \sf \sqrt{D} = \sqrt{60}

 \sf \sqrt{D} = \sqrt{4×15}

 \sf \sqrt{D} = 2 \sqrt{15}

________________________

Now,

α =  \sf \frac{-b + \sqrt{D}}{2a} \\

α =  \sf \frac{-(-10) + 2\sqrt{15}}{2(2)} \\

α =  \sf \frac{10 + 2\sqrt{15}}{2(2)} \\

α =  \sf \frac{ \cancel2(5+ \sqrt{15})}{\cancel2×2} \\

α =  \sf \frac{5 + \sqrt{15}}{2} \\

---------------------

Now,

ß =  \sf \frac{-b - \sqrt{D}}{2a} \\

ß =  \sf \frac{-(-10) - 2\sqrt{15}}{2(2)} \\

ß =  \sf \frac{10 - 2\sqrt{15}}{2(2)} \\

ß =  \sf \frac{ \cancel2(5- \sqrt{15})}{\cancel2×2} \\

ß =  \sf \frac{5 - \sqrt{15}}{2} \\

_________________________

According to the Question,

We have to Find the value of  \sf \frac{α}{ß} + \frac{ß}{α} \\

 → \sf \frac{α}{ß} + \frac{ß}{α} \\

 → \sf \frac{\frac{5 + \sqrt{15}}{2} }{\frac{5 - \sqrt{15}}{2}} + \frac{\frac{5 - \sqrt{15}}{2}}{\frac{5 + \sqrt{15}}{2}} \\

 → \sf \frac{\frac{5 + \sqrt{15}}{ \cancel2} }{\frac{5 - \sqrt{15}}{ \cancel2}} +\frac{\frac{5 - \sqrt{15}}{ \cancel2}}{\frac{5 + \sqrt{15}}{ \cancel2}} \\

 → \sf \frac{5 + \sqrt{15} }{5 - \sqrt{15}} +\frac{5 - \sqrt{15}}{5 + \sqrt{15}} \\

→ \sf \frac{5 + \sqrt{15} (5 +  \sqrt{15}) }{5 - \sqrt{15}} +\frac{5 - \sqrt{15}(5 -  \sqrt{15}) }{5 + \sqrt{15}} \\

→ \sf \frac{(5 + \sqrt{15})²  +( 5 -  \sqrt{15})² }{ {(5)}^{2} - (\sqrt{15})^{2} } \\

→ \sf \frac{(5) ^{2} + 2(5)( \sqrt{15}  ) + (\sqrt{15})²  +( 5) ^{2}  -  2(5)( \sqrt{15}) + ( \sqrt{15})² }{ 25 - 15 } \\

→ \sf \frac{25+ 10( \sqrt{15}  ) + 15  +25  -  10( \sqrt{15}) + 15 }{ 25 - 15 } \\

→ \sf \frac{25 \cancel{ + 10( \sqrt{15}  )} + 15  +25   \cancel{-  10( \sqrt{15})} + 15 }{ 10 } \\

→ \sf \frac{25  + 15  +25  + 15 }{ 10 } \\

→ \sf \frac{80}{ 10 } \\

 → \fbox{ \bf 8} \\

I hope it helps you ...

Answered by krishpmlak
0

Answer:

Step-by-step explanation:

Let p( x ) = 2x² - 10x + 5 = 0

α and β are the roots of p ( x ),

Cmparing p ( x ) with ax²+ bx + c = 0,

We have a = 2 , b = - 10 and c = 5.

∴ x = - b ±√ b² - 4ac /2a

= - ( - 10 ) ± √( - 10 )² - 4 ( 2 ) ( 5 ) / 2 ( 2 )

= 10 ± √ 100 - 40 / 4

= 10 ± √60 / 4

= 10 ± √ 4 × 15 / 4

= 10 ± 2√15 / 4

= 2 ( 5 ± √15 ) / 4

= 5 ± √15 / 2

∴ α = 5 + √15 / 2 and β = 5 - √15 / 2.

∴ α / β + β / α = ( 5 + √15 / 2 ) / ( 5 - √15 / 2 ) + ( 5 - √15 / 2 ) / ( 5 + √15 / 2 )

= ( 5 + √15 ) / ( 5 - √15 ) + ( 5 - √15 ) / ( 5 + √15 )

= ( 5 + √15 )² + ( 5 - √15 )² / ( 5 - √15 ) ( 5 + √15 )

= ( 25 + 15 + 10√15 + 25 + 15 - 10√15 ) / ( 25 - 15 )

= ( 80 ) / 10

= 8 is the answer.

Similar questions